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Abstract 

Bless Ann Varghese 

ANALYSIS OF AGGREGATE MINERALOGY USING LIBS 

2016-2017 

Beena Sukumaran, Ph.D. 

Master of Science in Civil Engineering 

 

 The New Jersey Department of Transport (NJDOT) has a vested interest in the 

determination of the chemical composition and thereby the mineralogy of aggregates. 

Depending on the mineralogy of an aggregate sample, it may be inappropriate to use for 

construction and roadwork purposes. Current methods of determining the mineralogy of 

aggregates are costly in terms of time, money and convenience. As such, there is a desire 

for the development of an alternative and efficient method for aggregate mineralogical 

determination in the field. 

The focus of this study is to develop a portable system for aggregate analysis in 

the field and compare the results with X-Ray Fluorescence (XRF) data provided by the 

NJDOT. Laser Induced Breakdown Spectroscopy (LIBS), which involves firing a laser 

pulse at a sample to determine its composition from light spectra emitted via a 

spectrometer and a custom program, was chosen to be the basis of the portable system. 

Along with system development, results were analyzed via Partial Least Squares 

Regression (PLSR). The current analysis technique utilizes split-training and y-scaling to 

analyze spectra data and performs well for most samples. 
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Chapter 1 

Introduction 

Strength and durability of a pavement is derived from the quality of materials 

used for its construction. The main structural component used for both HMA and 

concrete pavements are aggregates. In fact, the quality of aggregate determines the 

performance of the pavements. Aggregate quality is dependent on its strength, water 

absorption, resistance to abrasion and resistance to forces of weathering, which all 

depends on the mineral composition of the aggregate. Certain deleterious minerals like 

clay lumps, soft organic impurities and chert are undesirable for use in concrete and 

asphalt. New Jersey Department of Transportation uses X-Ray Fluorescence technique, 

chemical analysis and petrographic examinations to identify the mineral composition of 

aggregates. But, these methods do not provide real time data. These methods also involve 

complex sample preparations and are time consuming. 

This research is to develop portable equipment for the in situ characterization of 

qualitative as well as quantitative analysis of aggregate mineralogy using Laser Induced 

Breakdown Spectroscopy technology. This equipment can give rapid test results in less 

than an hour using a fresh breaking aggregate sample surface with absolutely no sample 

preparation.  

Hypothesis  

1. Laser Induce Breakdown Spectroscopy (LIBS) can be used to quantify the 

chemical composition of aggregate stone samples 

2. Partial Least Square Regression Analysis (PLSR) can be used to develop 

predictive models to predict the aggregate composition. 
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3. Spectrum processing methods such as split training strategy with Y-scaling 

produce accurate results 

4. A Graphical User Interface program facilitates rapid model testing and future 

refinement of models. 

5. The new equipment is feasible and affordable as a portable tool for field use. 

Significance of Research 

X-Ray Fluorescence (XRF) technique used by New Jersey Department of 

Transportation is reliable but expensive, non-portable and time consuming. XRF also 

requires sample preparation, which does not allow for many samples to be tested. 

Development of a portable, reliable system to quantify the chemical composition of 

aggregate helps for a rapid in-situ characterization with no sample preparation. This 

testing method helps to fast track the construction timeline; and ensures and enforces the 

New Jersey State standards for quality control. New Jersey State allows a maximum of 

five percent mix of aggregate varieties in the same batch of an aggregate type. Mixing of 

aggregates causes poor mix design for both HMA and concrete. With the new LIBS 

equipment, ensuring quality of aggregates in a timely manner is critical and pavement 

construction will be able to proceed smoothly. The portable equipment can be placed in 

the back of a truck and taken to the field as needed and should provide results in thirty 

minutes or less. 

Study Objectives 

This study will focus on the development of a portable tool for the in-situ 

characterization and quality control of aggregates using laser analysis. The primary 

objectives of this research are as follows: 
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1. To obtain the characteristic laser spectra models for various aggregate sources from 

New Jersey and surrounding areas; 

2. To calibrate the model using laser spectrums of newly added rocks to identify real 

time aggregate properties such as mineralogy; 

3. To determine if the field and laboratory setup produce consistent results; 

4. To improve the accuracy of the results with the expanded calibration dataset; 

5. To develop a user friendly program for rapid analysis of laser spectra with batch 

capability and for future refinement of the models as new stones are added; 

6. To determine the feasibility of laser technology as a portable tool for identification 

of real time aggregate mineralogy; 

7. To determine the feasibility and affordability of laboratory based laser technology 

applications for field use; 

8. To field test the use of lasers for real time property identification; 

9. To demonstrate the use of laser technology in the field for aggregate property 

determination and as a means of quality control; 

10. To develop a user-friendly manual for operation and regular maintenance of the 

portable laser setup; and 

11. To train the personnel in the use of the laser technology. 

Research Approach 

This section gives an overview of the research process to achieve the above 

research objectives. This research includes a thorough literature review of the geological 

formations and classifications of rocks in New Jersey; conventional techniques of mineral 
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characterization; selection of operating variables; model refinement for accurate 

predictions; design of portable tool; and field testing and analysis. 

Thesis Structure 

Chapter 1 of this thesis gives an overview of this research which includes 

introduction, problem statement, hypothesis of this research and its significance. Chapter 

2 consists of a detailed literature review to understand the background of this research. 

This chapter begins with the geology of the state of New Jersey and surrounding areas to 

obtain a better understanding of the geologic origin of key rock types used by New Jersey 

Department of Transportation. Next, this chapter discusses various conventional methods 

used for the qualitative as well as quantitative analysis of rock mineralogy. Then it 

describes the concept and detailed overview of Laser Induced Breakdown Spectroscopy, 

its previous applications in various field and its experimental limitations or errors. 

Finally, this chapter describes in detail various statistical analysis methods, and provides 

details of the various techniques used in this study. 

Chapter 3 describes in detail the experimental setup, field setup and various 

methods and standards employed to collect data. This chapter also describes various 

spectrum preprocessing methods, classification methods and other strategies. 

Chapter 4 discusses the results from the validation of field setup, various 

classification methods and testing results and expanded calibration results. It also 

includes results from field testing, and feasibility and affordability of the field setup. 

Chapter 5 discuss the conclusions of this research, a user-friendly manual 

developed for the field equipment, how this equipment can be used as a means of quality 

control and future areas of study. 
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Chapter 2 

Literature Review 

Geology of New Jersey 

New Jersey is the fourth smallest state in the United States of America, and boasts 

an impressive geological variety. New Jersey contains four geographic regions known as 

physiographic provinces, with characteristic mineralogy. These regions are the Coastal 

Plain, the Piedmont, the Highlands, and the Valley and Ridge regions as shown in the 

figure 1 [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 1. Layout of the 1:100,000 Scale of Geologic Map of New Jersey [2]. 

Coastal plain. Starting near Trenton and extending downwards to the southern 

end of the state, the Coastal Plain contains a flat or lightly rolling topography. There are 
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however, some higher elevation areas consisting of erosion resistant gravel and iron-

cemented sediment. The majority of the Coastal Plain region consists of sand, silt, and 

clay sediments deposited in the environment due to the fluctuation of the sea level in the 

Cretaceous and Tertiary time periods around 145.5-2.58 million years ago [2]. There also 

exist wide bands of sand from the late tertiary and early Quaternary periods (~2.58-1.8 

million years ago, [2]) along with gravel from river deposits [1]. 

This region was once the location of bog iron, glass sand, foundry sand, ceramic 

and brick clay mining. Recently mining has shifted over to glass sand and sand and 

gravel for construction material. The large sand deposits also serve as aquifers and 

ground water reservoirs [1]. 

Piedmont region. From the area around Trenton to a series of major faults, such 

as the Ramapo fault, lies the Piedmont region. Boasting rocks from the late Triassic and 

early Jurassic periods (~201.3 million years ago [2]) rather than the Cretaceous through 

Quaternary periods, the Piedmont region contains valleys known as rift basins formed by 

large crustal blocks dropping downwards during the elongation of the Atlantic Ocean. 

Sediment from higher elevation areas compacted in these basins over time, forming 

sandstone, siltstone, and shale deposits. These mineral deposits often have a reddish-

brown color [3]. Along with the sandstone and shale is basalt and diabase from ancient 

volcanic activity. These volcanic deposits help to from a ridged topography in the region 

due to the greater erosion resistance of basalt and diabase when compared to the other 

sediments. Further north near the fault lines that make up the border of the piedmont 

region, some granite and gneiss can be found [1]. 
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In the past “brownstone,” a once popular building material regarded as the state 

rock of New Jersey, was quarried from the sandstone deposits [4]. Presently, basalt and 

diabase are quarried for crushed stone. Some copper is also obtained from the sandstone 

and shale associated with the basalt and diabase deposits [1]. 

Highlands. Extending from the Ramapo fault to a border formed from a line from 

Franklin to Andover through to the Delaware River is the Highland region. The highlands 

primarily contain granite, gneiss, and Precambrian era (541 million or more years ago 

[2]) marble. The geology of the region came about from the melting and recrystallization 

of sedimentary rocks under high pressure and temperature from 1.3 billion to 750 million 

years ago, making the rocks in this region the oldest in New Jersey [1]. The erosion 

resistant properties of the granite and gneiss lend themselves to a hilly upland with 

valleys containing streams. 

The highlands were once a source of magnetite ore deposits but are now quarried 

for crushed stone [1]. The Franklin Marble located in Ogdensburg, New Jersey is a mine 

containing a mineralogically unique zinc ore. This area of the highland region contains 

several unique fluorescent minerals that cannot be found elsewhere [5]. 

Valley and ridge region. The remaining northeastern portion of New Jersey is 

known as the Valley and Ridge region which encompasses as area around 530 square 

miles. This region was formerly covered in seas and floodplains, depositing sand, mud, 

and lime sediment in the area. Over a period of time ranging from the Cambrian to the 

Devonian eras (541-485.4 and 419.2-358.9 million years ago, [2]), these sediments 

formed into sandstone, shale and limestone. During the Ordovician era (485.4-443.8 

million years ago, [2]) and the Pennsylvanian to Permian time (323.2-252.17 million 
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years ago, [2]) these minerals were compressed into folds along fault lines, resulting in 

linear belts of different minerals in the region. Alternating belts of erosion resistant 

sandstone and erosion susceptible shale and limestone led to the creation of ridges and 

valleys for which the region is named [1]. 

Limestone deposits in the valley and ridge region are quarried for construction 

purposes as well as to serve as an important ingredient for cement. Limestone can also 

yield large amounts of ground water, making the deposits good aquifers [1]. 

Key Rock Types Used by New Jersey Department of Transportation  

While not representative of the absolute range of rocks found in aggregate, focus 

was placed on gneiss, limestone, dolomite, basalt, quartzite, argillite, and shale. These are 

the rocks collected and used by NJDOT for various highway construction purposes. 

Carbonate rocks. The term carbonate is used in the aggregates industry to define 

aggregates that consist mainly of dolomite (Ca Mg(CO3)2) or Calcite (CaCO3). Some 

examples of carbonates are limestone, dolomite, marl and chalk. An alkali-carbonate 

reaction can be potentially detrimental to the strength of a concrete mix. An alkali-

carbonate reaction occurs when the alkali hydroxides in the binder react with the 

carbonates in aggregates, which leads to a decrease in the performance of a concrete. This 

reaction is relatively rare because most aggregates with high enough reactive carbonates 

are generally not suitable for concrete for some other reason like a low potential strength 

[6]. 

Dolomite. Dolomite is a sedimentary rock chiefly composed of calcium 

magnesium carbonate (Ca Mg(CO3)2). While containing a carbonate group, dolomite 

behaves differently from calcium carbonate (Ca(CO3)) based limestone. While carbonate 
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minerals such as limestone are known to effervesce in a hydrochloric acid solution, 

dolomite only does so slowly as a powder and not at all as a crystal [7]. Dolomite is much 

weaker as an acid soluble material; however, dolomite is still not a recommended 

aggregate. 

Limestone. Calcium carbonate (Ca(CO3)) containing limestone is a key material 

for evaluation in aggregate applications. A common sedimentary rock, limestone has 

properties that make it unsuitable for aggregate applications. Limestone is weak to 

abrasion and will polish and become smooth when exposed to weathering and wheel 

loads [8]. A smoother roadway surface as a result of limestone-containing asphalt will 

show poor tire adhesion and be at a risk for hydroplaning. Limestone is also an Acid 

Soluble Material (ASM). In a solution of hydrochloric acid, limestone aggregate will 

dissolve. Thus, the acidity of rainwater causes limestone to breakdown, making the rock a 

poor fit for outdoor applications [9]. 

Gneiss. Gneiss is a high-grade metamorphic rock where the grains recrystallize 

under high heat and pressure and form into distinctive bands of varying mineral 

composition. The recrystallization of grains causes the grain size to increase and 

segregates them into distinctive bands. Gneiss is not defined by its mineral composition 

but most gneiss contains interlocking grains of quartz and feldspar. Gneiss and most 

metamorphic rocks generally do not split across its planar imperfections. This property 

allows gneiss to be used as a crushed stone in the cement and construction industry [10]. 

Basalt. Basalt is a fine grained igneous rock that is lightweight, with a glassy dark 

color. Basalt is an extrusive igneous rock, which means it is formed when molten rock 

cools either near or at the surface of the earth. [3] It is the most common igneous rock due 
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to its low viscosity which allows it to flow long distances. Basalts are generally 

comprised of pyroxene (Ca, Na) (Mg, Fe, Al) (Al, Si)2O6, plagioclase CaAl2Si2O8 or 

NaAlSi3O8 and olivine (Mg, Fe)2SiO4. The SiO4 content in basalts is 45%-52%. Basalts 

are used as an aggregate for the construction and pavement industry and for these 

applications it is preferred a low olivine content [11] 

Quartzite. Quartzite is a metamorphic rock formed when quartz sandstone is 

exposed or weathered under considerable heat and pressure. Due to quartzite’s quartz 

basis, the aggregate is primarily identified via its SiO2 content. Due to its chemical 

makeup, quartzite is susceptible to alkali-silica reaction. Like quartz, quartzite is hard and 

durable. Quartzite also demonstrates an angular surface when broken. The pressure and 

heat responsible for quartzite formation causes the aggregate to be made up of quartz 

crystals instead of quartz grains. This leads to a flatter surface than pure quartz, since 

quartzite will break across quartz grains rather than around them [7]. Quartzite’s inherent 

hardness makes it wear resistant and the angular pieces can interlock to impart greater 

stability to the overall structure of the application [9]. While not always used in road 

work applications, use of quartzite can be advantageous. 

Shale. Shale is a sedimentary rock composed of hardened mud and contains 

appreciable amounts of mica and quartz along with the more predominant clay minerals. 

Shale breaks into small angular block, referred to as mudstone or siltstone dependent 

upon grain size [7]. Shale commonly reacts with dehydrated limestone and breaks down 

into CaO and CO2 to produce cement powder [10]. As an aggregate, however, shale 

shows deleterious effects. Crushed shale can break down into a clay powder. Clay 
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expands when exposed to water and will cause surface stripping, making shale as a pure 

aggregate a poor fit for asphalt applications [12]. 

Argillite. Argillite is a very hard mudstone. Mudstones are fine-grained 

sedimentary rocks with grain sizes less than 0.06 mm and are comprised of a mixture of 

clay and silt sized particles that form when mud hardens. Argillite is not fissile, meaning 

it does not break along closely spaced bedding spaces like shale [11]. Argillites are weak 

compared to other similar sized aggregate and are very angular, which would increase the 

amount of binder needed. Despite these negative properties argillite still has applications 

as an aggregate in low strength concrete applications [13]. 

Various Analysis Methods for Aggregate Mineralogy 

Various methods for the analysis of aggregate mineralogy were studied and Laser 

Induced Breakdown Spectroscopy is selected for this research. 

Atomic Absorption Spectroscopy (AAS). Atomic Absorption Spectroscopy can 

accurately measure the concentration of metal elements present in a sample [14]. A 

sample is first atomized before a certain wavelength of light is passed through the 

sample. This can be done in several ways, but the most common method is flame 

atomization. Depending on the atomic composition of the sample, a certain wavelength of 

radiation (i.e. a certain energy input) is required to excite the electrons of a given element 

from one specific shell to another. A detector analyzes the radiation flux between tests 

with and without the sample, and these values as a ratio can be used to find elemental 

concentrations using the Beer-Lambert Law [14]. This method is dependent on the 

property of metals that they absorb specific, discrete wavelengths and return 
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characteristic spectrographic spectra, therefore this method cannot be used to determine 

non-metallic elemental compositions accurately [15]. 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Inductively 

Coupled Plasma-Mass Spectrometry (ICP-MS) ionizes an aerosol mass of the sample to 

be analyzed by introducing it into an argon plasma. Sample ions are collected and then 

separated using a spectrometer according to the ratio between the mass and charge of 

each ion [16]. By this method, the concentration and distribution of each element within 

the sample can be found [17]. This method has been proven to determine sample 

composition with only 1% error, as shown by J. Ludden et al. [18]. However, this process 

takes a significant amount of time due to the necessity of powdering the sample and 

adding it to an acid solution before testing [19]. This negates the possibility of in situ 

testing due to the amount of sample preparation required. Additionally, the ICP-MS 

instrument is large and is not feasible as a portable device. 

X-Ray Fluorescence (XRF). X-ray fluorescence (XRF) spectrometry uses an x-

ray instrument to analyze the chemical composition of aggregate samples. X radiation is 

directed at an aggregate sample. The sample then ionizes and loses inner-shell electrons. 

As outer-shell electrons move into the lower energy orbit, the sample emits x-rays of 

wavelengths unique to the individual elements present [20], [21]. For this method, the 

sample must be powdered and vitrified [19]. This method produces accurate results when 

conducted using relatively large sample sizes (>1 gram), [19]. However, it takes two 

weeks to conduct this test from preparation to results, and the equipment is expensive and 

cumbersome. As such, XRF spectrometry is not a viable option for field testing. 
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Electron Probe Micro-Analysis (EPMA). Electron Probe Micro-Analysis is a 

method for determining sample chemical composition using the same principles as x-ray 

diffraction. The significant differences are that EPMA analysis uses a focused electron 

beam rather than x-rays to ionize the sample, and EPMA analysis uses multiple sensors to 

record both emitted x-rays as well as electrons released by the sample [20], [22]. This test 

is conducted on a small point on a sample (1-2 microns across) and is subsequently 

relatively non-destructive [22]. However, the small size of the targeted area leads to 

potential inaccuracies in chemical composition determination of larger samples. 

Pownceby et al. included cathodoluminescence (CL) mapping to aid in determining the 

composition of minerals [23]. Due to the number of sensory instruments required to 

collect complete data from EPMA testing, the overall setup is too large to serve as a 

portable option. 

Laser Induced Breakdown Spectroscopy (LIBS). Laser Induced Breakdown 

Spectroscopy can be used to quantify the concentrations of individual chemical 

compounds within a test sample. LIBS were developed in the 1960’s as an alternative 

method of creating plasmas instantly out of any material from which a characteristic 

spectrum can be obtained. A high-energy laser pulse is used to ablate the sample surface 

to form plasma. The plasma is formed from the vaporized sample surface material which 

is caused by three body collisions between photons, electrons and atoms, or molecules 

[24]. The ionized sample releases light in wavelengths characteristic to its component 

elements. This light is directed to a spectrometer where it is analyzed, and a plot of 

wavelength versus intensities can be obtained. Greater intensities of light can reflect 
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larger portions of the corresponding element in the sample, thus by this method elemental 

composition can be determined [24]. 

Configuration of LIBS 

The various components of a Laser Induced Breakdown spectroscopy apparatus 

are described. A laser connected to a power supply provides pulses of high-powered laser 

light at regular intervals, which are directed at a point on the sample of unknown material 

placed in a designated holding chamber or device. This laser light is focused with a lens 

onto a small spot on the surface of the sample. The sample responds by emitting 

wavelengths of light as the ionized particles return to lower energy levels. This process, 

known as laser ablation, is covered in the following section. A series of lenses and 

mirrors direct this released light and directs it to the spectrometer, which filters this light 

and measures the intensity of individual wavelengths (25). The spectrometer is controlled 

by a computer program that can set specific variables, such as the delay of data 

collection, which is discussed further under plasma cooling. Within the spectrometer, 

collected light is first passed through an entrance slit to obtain a single beam of light, 

which is then directed at a diffraction grating (25). This grating diffracts each wavelength 

of light from the original beam at a different angle out of an exit slit to a sensor array, 

which measures the intensity of each wavelength and outputs digitized data [24]. A 

diagram of this process is illustrated in Figure 2. LIBS technology is proven to can 

identify elemental composition of a variety of sample types, and can be compact and 

suitable as a portable testing system [25], [26]. 
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                               Figure 2. Overview of LIBS System [26]. 

Laser ablation. The LIBS method for analyzing the composition of a sample 

material is dependent on the characteristic light wavelengths that individual elements 

emit. In order to observe this characteristic, the sample must be charged with energy that 

it can then release in the form of visible light. This is done through laser ablation, in 

which a focused laser pulse ionizes the surface of the sample, creating a plume of 

material in the plasma state [27]. This process is represented in figure 3. 

This process dissociates the inner-shell electrons from the atoms. As the outer-

shell electrons lower their orbits, the ions in the plasma release light energy that is 

collected and analyzed. Heat energy is also released during this process, and the plasma 

rapidly cools and returns to a lower-energy state.  
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                                       Figure 3. Laser Ablation [29]. 

Laser plasma. The main goal of LIBS technology is to create a thin plasma that 

completely and represent the sample elements and its concentrations. But this goal is 

usually approximate, depending on various conditions. 

Plasma cooling. In the plasma, the sample particles are in an excited energy state. 

This plasma rapidly cools, and the ions return to a state of lower energy, releasing this 

energy partially in the form of light in the visible spectrum [24]. The power of the laser 

impacts the time it takes for this process to occur, as a higher power laser imparts more 

energy to the plasma and causes it to heat to a higher temperature. It will then require a 

longer period of time to cool. The ions release characteristic light wavelengths during this 

process that correspond to the elements present. In order to collect the highest intensity of 

this light possible for analysis, the spectrometer must be set to collect data on a specific 

delay with respect to the laser pulse. If the delay is too small, data collection will begin 

and end before most the light energy is released. If the delay is too long, the plasma will 
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have already cooled too much and the collected light intensity will be very low, reducing 

the definition of the resulting data. Optimal spectrometer delay also avoids blackbody 

radiation. Trial-and-error testing must be conducted to determine the optimal 

spectrometer delay, which is dependent on the power of the laser being used.  

The laser emission depends on temperature and density of plasma. The plasma 

size, propagation speed and energy of the emitted light depends on the ambient gas into 

which the plasma expands. Gas pressure will influence plasma and the plasma energy 

distribution [60]. The three main features of plasma emitted light consisting of discrete 

lines, bands and an overlying continuum are wavelength, intensity, and shape. The 

feature depends on the atomic structure of the sample particles and their environment. 

Each atom of various element has different energy levels which determines its emission 

wavelengths. The wavelength line intensities depend on the amount of elements present 

in it.  

Data Acquisition Time and Delay 

The data acquisition time and delay depends on the elemental atoms excitation 

energy, laser energy and ambient pressures. The figure 4 shows the plasma initiated in air 

at 1 atm by a 5 to 10ns using a 1064-nm Nd: YAG laser. The time scale will change 

depending on longer (CO2 laser) or much shorter (pico- or femtosecond lasers) laser 

pulses. Plasma lifetime varies proportionally with the ambient pressure since the trapping 

and recycling of absorbed energy in the plasma volume changes accordingly.  
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                           Figure 4. Temporal History of LIBS Plasma [25]. 

Application of LIBS 

Metal industry applications. A LIBS sensor can be used to detect traces of 

explosives remotely [28], [29]. It is also used to detect the protective coating of metals in 

metallurgy [30], carbon content in molten steel [31], and quantify the minor constituents 

in molten aluminum alloys [32]. 

Biological applications. LIBS technology has been used for differentiating 

pathogens and viruses on substrates [33]. It is also used in determining the concentrations 

of hazardous materials in industrial waste water [34]. The industrial waste water has to 

undergo certain purification process to avoid contamination of soil and underground 

water. Hence, knowing the concentrations of toxic elements in waste water is useful and 

important. 
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Geologic applications. LIBS technology has been used as a portable tool for in 

situ characterizations of speleothems in Karstic caves [35]. It can also be used as a rapid 

analysis tool for petrochemical analysis of geological materials [36]. 

D-Cracking of aggregates by KSDOT. The Kansas Department of Transportation 

(KSDOT) used LIBS to analyze the likelihood of D-Cracking and to identify the source 

quarry of an aggregate sample. D-Cracking is a breakdown of aggregates, typically 

caused by freeze-thaw conditions, and the KSDOT uses two test methods; the KTMR-21 

and KTMR-22 tests, as a criterion for determining an aggregate blend. To identify a 

source bed, a model was developed to classify an aggregate sample based on a branching 

algorithm which distinguishes an aggregate based on its spectrum meeting a unique 

criterion, or continuing to additional checks. A second model was generated to predict 

whether the aggregate would pass or fail the previously mentioned tests. The model 

predicted the result with perfect accuracy, indicating that a spectrum feature or features 

can be correlated to a susceptibility to D-Cracking [37]. 

To Acid Soluble Residue in Carbonate Aggregates by NY State DOT. The New 

York State Department of Transportation (NYSDOT) Materials Method 28 imposes 

limits on the use of carbonate aggregates in asphalt and concrete; namely that a carbonate 

aggregate must contain at least 20 Acid Insoluble Residue (AIR), i.e. silicates, or that the 

aggregate must be blended into a mix containing at least 20 percent silicates. One model 

was created and calibrated which predicts the AIR content of an aggregate sample, and 

another was created which determines the percent non-carbonated in an aggregate blend. 

Both models performed reasonably well, with the percent AIR model achieving very high 
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accuracy. It is worth noting however, that the NYSDOT models utilized large calibration 

and test samples [37]. 

Identifying Chert in aggregate by TXDOT. The Texas Department of 

Transportation (TXDOT) developed a three-model system to quantify the percent of 

reactive chert in an aggregate blend, classify the sample as highly reactive or not, and to 

identify a sample from a collection of several. Chert is a type of silica which is a major 

cause of Alkali Silica Reactive aggregates, which can experience damaging expansion 

within the concrete. The first model resulted in very high accuracy in quantifying chert 

content in the testing set. Similar to the KSDOT’s model, the second model was 

developed by regressing samples against a yes/no or pass/fail system. While the model 

incorrectly classified some individual spectra, the model correctly classified aggregates 

when spectra were averaged. Individual sources of cherts were identified using a 

branching test model similar to the KSDOT, in which sources were differentiated based 

on a unique criterion [37]. 

Advantages of LIBS 

LIBS technology needs little or no sample preparation. A fresh surface of the 

sample can be directly analyzed using a laser pulse. [42] 

1. LIBS can be used for testing solids, liquids and gases. [42] 

2. LIBS testing requires a very small amount of sample in milligrams, which can be 

a small part of a larger object. Hence, this method is a minimally destructive 

technique. [42] 

3. Hardness of the material does not impact LIBS testing. [42] 
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Experimental Errors 

In laser testing with LIBS, the following errors must be considered. 

1. Plasma Opacity: When the emitted radiation escapes from the plasma without 

significant absorption or scattering, the plasma becomes optically thin. Optically 

thin plasma gives better LIBS results due to a greater amount of radiation 

escaping the plasma along the length of the plasma. Following ablation, plasma 

formed are not completely transparent, that will partially shield the light emitted 

by the particles, particularly towards the center of the plasma where the plasma is 

dense. This will skew data of some elements. However, the use of short laser 

pulses decreases the effect of non-transparent plasma [24]. 

2. Atmospheric Plasma: When LIBS is tested in atmospheric air, the laser pulse will 

cause plasma to form in the atmosphere immediately adjacent to where the laser 

hits the sample. The resulting atmospheric plasma, caused by the atmospheric 

elements, will show a high spike of nitrogen and oxygen in the LIBS spectrum. 

Testing in vacuum would eliminate the formation of atmospheric plasma. As it is 

more convenient to conduct on-site test on atmospheric conditions, this study is 

developed based on the results conducted in air. Calibrating the model in the same 

conditions where the sample is tested would somehow eliminate the effect of 

atmospheric plasma, and is more effective than the idea of testing in vacuum [24]. 

3. Incomplete Vaporization: Tendency of some elements to ablate more readily that 

other elements and the plasma opacity can cause in incomplete vaporization.  

Incomplete vaporization of material will produce as lower light intensities 

compared to completely vaporized samples. This can be mitigated either by the 
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use of a powdered sample, which will make the sample preparation more 

complex, or through the use of larger testing set size to limit the effect of non-

vaporized particles [24].  

4. Baseline Light: This is caused by background light on the sample chamber. This 

can be eliminated by testing in a dark chamber. Some baseline may continue to 

exist in the LIBS spectra due to the signal noise, however spectral filtration can 

remove the additional light [24]. 

5. Accelerated ionization: This is the increased tendency of the ionization of free 

electrons formed by the interaction of some particles, which can skew the 

distribution of various elements present in the sample. By using optimum delay 

and recording data at the end of the plasma glow, better results will be obtained 

[24]. 

6. Stark broadening:  A reduction in effective resolution due to the local electric 

fields produced by the ionization of atoms in the plasma, which causes the 

electrons to fall into lower energy levels and vary the wavelength of light emitted 

by the particles. This causes the light emitted from certain species to have wider 

Gaussian distribution with respect to the wavelength. This distribution would 

likely overlap and result in the broadening of the spectrum baseline. This error 

can also be limited by collecting the light at the end of the plasma glow thereby 

eliminating the effect of the presence of electric fields in dense plasma [24]. 

7. Chemical Matrix Effects: Some elements ionize more quickly than others to 

produce more free electrons to recombine each other. This results in the higher 

concentration of neutral particles causing a non-uniform distribution of ions and 
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neutral particles. Studies show that interference of these ions can cause variation 

in the wavelength of the light produced by the original molecular composition 

[24].  

8. Surface Conditions: The surface conditions of the material being tested can affect 

the data being collected. Surface dust or other contaminants present in the sample 

will represent the plasma formed and thus the light spectrum collected. It is 

determined that by firing an appropriate number of initial laser shots on a single 

point on the sample, the surface dust can be removed and the later laser shots can 

ablate the original molecular composition, which is collected as light spectrum. A 

proper testing procedure is developed in this study by neglecting the initial 200 

laser shots and then collecting 100 subsequent laser shots [24]. 

Analysis of Aggregate Mineralogy by NJDOT 

New Jersey Department of Transportation currently uses X-ray Fluorescence 

analysis and petrographic examination to fully characterize the aggregate source and 

quantify the mineral composition of aggregates. The petrographic examinations based on 

ASTM C-295 standards helps to quantify the amount of specific minerals like chert 

(microcrystalline quartz), pyrite and shale. It also helps to identify the expansive quartz 

that cause alkali-silica reactions in Portland Cement Concrete mixtures [38], [39]. X-Ray 

Fluorescence analysis method gives elemental composition of aggregate as described in 

the previous section.   

Data Analysis Methods 

Various data analysis methods used by previous application of LIBS technology in 

geological applications are described herein. 
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Artificial Neural Network (ANN). Artificial Neural Network is a mathematical 

modeling methodology capable of building nonlinear relationships between complicated 

inputs and outputs. It was developed by a physiologist, Frank Rosenblatt, inspired by the 

complicated neural networking of human brains [40]. 

 

 

 

 

 

 

 

 

 

 

 

 

                        Figure 5. Artificial Neuron Network [43]. 

ANN uses a set of interconnected neurons to establish the inter-related layers or 

hidden layers between the inputs and outputs as shown in the figure. ANN is used in 

several applications in particular with LIBS technology such as material identification by 

NASA [41], rapid classification of archaeological ceramic [42] and polymer material 

identification [43]. This pattern recognition modelling was not considered for research as 

simpler methods were found to be effective. 

Principal Component Analysis (PCA). Principal Component Analysis (PCA) is 

a statistical method similar to pattern recognition for identifying the variations among the 

input data and building a pattern or trend. PCA uses orthogonal transformation to convert 

original set of observations into a derived variable set, which are the linear combinations 

of original variables. These derived variables, which will be less than or equal to the 
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original number of data sets, are called principal components [44], [45]. PCA is used in 

chemometrics industry for the qualitative identification of ethanol and other products 

[46]. It is also used in waste recycling industry to broadly identify and classify various 

plastics by employing a Nd: YAG Laser and a spectrometer to obtain the characteristic 

spectrum of materials and using PCA and Mahalanobis distance (M) analysis to identify 

the type of plastic [47] 

Partial Least Square Regression (PLSR) analysis. Partial Least Square 

Regression analysis is another statistical model, which is a combination of PCA and 

multiple regressions. It was developed by a Swedish Professor, Herman Wold [48]. When 

the input factors are large in number and are highly collinear, none of the standard 

regression functionalities will be suitable for analysis. PLSR is best used where the 

number of predictors is much higher than the number of observations [49]. PLS 

decomposes the X variables and Y labels into a product of orthogonal factors or score 

matrix and a loading matrix. 

𝑋 = 𝑇𝑃𝑇 + 𝐸 

𝑌 = 𝑈𝑄𝑇 + 𝐹 

Where T is the X score matrix or the projections of X in new space of size n x l 

and U is the Y score matrix or the projections of Y in new space of size n x l. T (m x l) 

and U (p x l) are the loading matrices of X (n x m) and Y (n x p) [49]. A function is then 

established in the original space capable of predicting Y’s for any input X’s. 

PLSR increases the covariance between the orthogonal factors/ scores of X and Y 

such as T and U. A SIMPLS algorithm is used in this research where coefficients are 

determined by maximizing the covariance rather than minimizing the least squares as in 
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multi-linear regression function. PLSR has proven to be more a predictive oriented model 

than other regression functions [48]. PLSR is widely used in chemometrics as a basic tool 

to predict the chemical properties and biological activities based on its chemical 

structures [50]. Its ability to analyze large number of factors with noisy and highly 

collinear data gives its wide applications in industries.  

PLSR is also used in spectral analysis of LIBS technology. Whang et.al used a 

multivariate dominant PLS model to determine the concentrations of Cu in brass alloys 

[51]. The characteristic light intensities obtained using LIBS depends on the elemental 

concentrations and the chemical interaction between the elements in the plasma. Since 

LIBS spectrum is highly sophisticated with uncontrollable experimental errors within the 

collected light intensities, its application is limited. Also, the light intensity peaks vary 

with experimental conditions; standard regression functions are incapable of handling 

LIBS spectrum. PLS-R due to its versatility to accommodate all these fluctuations has 

found to be the best predictive model for LIBS spectrum analysis.  

The samples used in this research are largely heterogeneous rocks and hence to 

accommodate variations among the samples, PLS-R method is used to develop predictive 

models. 
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Chapter 3 

Methodology 

As discussed in Chapter 2, Laser Induced Breakdown Spectroscopy provides a 

unique spectrum for each aggregate sample provided, which is representative of its 

chemical composition. In this chapter, more details of the testing equipment and the 

operational procedure is provided. In addition, some of the data preprocessing techniques 

that can yield accurate mineralogical composition is also discussed. 

Laboratory Setup 

This setup uses a Quantel Ultra Laser, with a Nd3+ doped Yttrium Aluminum 

Garnet crystal gain medium (Nd: YAG), capable of emitting light with a wavelength of 

1064 nm at a Pulse Repetition Frequency (PRF) of 10Hz. The pulsed laser operates in a 

Q-switch mode, in which an optical switch opens when the majority number of 

Neodymium ions are in higher excited energy states. Neodymium ions in various types of 

ionic crystals act as a laser gain medium. It emits 1064nm light from the atomic transition 

of Neodymium ions from higher excited state to the ground level after being pumped into 

excitation by an external trigger. This laser is built to withstand harsh environments. The 

energy of the laser is set to 100 mJ. A schematic diagram of the setup is shown in Figure 

6. 
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                             Figure 6. Flowchart of Laser Equipment. 

The setup is arranged in a lightweight honeycomb breadboard of size 36 in. length 

and 12 in. width as shown in Figure 6 and the weight of the whole setup is reduced to 120 

lbs. The laser head is aligned in line with the focusing lens and the sample so that 

maximum energy from the laser pulse is utilized to ablate the sample. A sample holder 

with a removable magnetic focus pointer is used to hold the sample in a vertical position 

in line with the laser beam. The position of the sample can be adjusted to correspond to 

the focal point of the beam by use of an automated translation stage. The sample is placed 

on an elevated holder, which prevents dust contamination during continuous testing. The 

light emitted from the sample is collected using an off-axis hyperbolic reflector and send 

to a spectrometer through fiber optic channels as shown as Label 4 in Figure 7. 
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                                            Figure 7. Laboratory Setup. 

The integrated spectrometer consists of 6 channels, with each channel 

corresponding to a specific spectral range. The resolution of the spectrum obtained is less 

than 0.1 nm for visible UV light and less than 0.11 nm for visible to near infrared. The 

timing generator is a fully integrated electronic pulse generator with independent external 

triggers such as a flashlamp and Q-switch. The optimal flashlamp Q-switch delay of 180 

µs is used. Too short or long delay between pump and Q-switch causes a decrease in the 

population of higher excited Neodymium ions caused by spontaneous emission resulting 

a loss in the output pulse energy. The spectrometer delay (aka acquisition delay) of 5 µs 

is used to control the delay between the laser pulse and the onset of spectrometer data 

collection. 
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A dust control system has been implemented in this setup. The optics and sample 

holder are housed separately to prevent contamination by dust ablated from the sample. 

Two small holes are made in the chamber boxes to allow for the passage of the laser 

beam and to collect the light emitted by the sample. Two fans were fitted at the opposite 

end of the optics chamber to maintain airflow out of the box through the tiny holes. This 

prevents the dust particles from entering the chamber boxes through the holes. Heavy 

ablated particles will settle in the sample chamber. The sample chamber is cleaned 

regularly to prevent dust accumulation.  

Field Setup 

The field setup is assembled in a composite wooden crate to make it portable. The 

size of the portable equipment was 48 in X 24 in X 20 in and it weighs around 200 lbs. A 

power strip of 120 V is mounted on to the crate. This equipment is mounted on the back 

of a truck and can be transported to field sites for on-site testing. 

Internal layout of components is designed and constructed using steel clamps to 

fix the components in position. The breadboard is placed on a vibration isolation pads 

and friction pads. This helps to minimize vibrations from being transmitted to any of the 

optics in the laser setup. 

A layer of impact resistant foam is placed between the clamp and each 

component. This provides individual cushions for each component and it absorbs sudden 

impacts or shocks and protects the equipment from damage. This takes into consideration 

sudden movements caused by braking of the vehicle, potholes and vehicular accident 

damage. In addition, a set of bungee cords is used to secure the components to provide a 

layer of additional security. Figure 8 shows the final setup of portable equipment. 
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                                           Figure 8. Portable LIBS Setup. 

Data Acquisition and Testing Procedure 

The following provides a step-by-step guide on how to operate the equipment and 

obtain testing data for analysis.  

1. All operators should complete the safety training, the link for which is provided in 

the Appendix, before operating the equipment.  

2. On the laser’s control unit, switch the key to the ON position to turn on the laser 

unit. The laser’s coolant must reach the operating temperature before the laser can 

be used. Figure 9 shows the laser power key switch and the coolant light when it 

is booted up. 
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                              Figure 9. Laser Power Switch. 

3. Connect the spectrometer’s power supply and ensure all connections and cables 

are in place. 

4. Power up the laptop and connect the spectrometer to the laptop using the USB 

code. Ensure that all the green lights on the spectrometer are on. The green light 

indicates that the system is receiving power. 

5. Start up the Data Analysis software and wait for the software to establish 

communication with the spectrometer. When the indicator light on the software 

turns green, the software and spectrometer are ready to be used. Figure 10 shows 

the green light when the spectrometer software, Aurora, is initialized. 
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                     Figure 10. Aurora Software Initialization. 

6. Check the front face of the spectrometer to ensure that the yellow lights are on for 

each channel. The yellow light indicates that it is ready to communicate with the 

software. Figure 11 shows the green and yellow lights on each 6 channels of 

spectrometer. 

 

 

 

 

 

 

 

 

                                       Figure 11. Spectrometer Lights. 

7. Set all timing values in the software to their appropriate values. The flashlamp 

width, Q-switch width, and Q/S delay values should be set to 0 when the 

spectrometer is triggered externally. The integration time may be left at its default 

value. The spectrometer delay setting may be set as desired, but note that the 



www.manaraa.com

34 
 

actual delay will be 1.3 μs greater than the setting. The spectrometer delay setting 

in this procedure is 5 µs giving a total delay of 6.3 µs. The number of shots to be 

collected can be set to some desired value. For the experiments performed thus 

far, 300 shots are fired, of which the first 200 are neglected and the data from the 

last 100 shots are collected.  

8. Place the sample in the sample holder. Using the controller, the sample position is 

adjusted to the predetermined reference point that coincides with the laser focus. 

9. Place the sample chamber box to prevent spectra disturbance due to ambient light. 

10. To adjust the energy output of the laser, set the flashlamp-Q-switch delay time to 

180 μs using the control pad. Increasing the delay time will decrease the energy 

output. A pulse energy of about 100 mJ is generally determined to be optimal for 

testing. 

11. To activate the laser’s flashlamp, press Ready and then Start on the top row of the 

control pad selection. 

12. Before firing the laser, ensure that everyone present is wearing appropriate safety 

goggles and that any windows are covered. Observe any other safety measures as 

appropriate.  

13. When ready to begin testing, press the Data Acquisition button on the 

spectrometer software (this button looks like a ‘Play’ symbol). 

14. When ready to fire, press Single Shot to fire the laser pulse once.  Continue firing 

laser pulses until the appropriate number of output spectra have been obtained.  

15. The initial 200 shots are fired to remove any surface contaminants. These laser 

shots penetrate the sample and collects the light spectra for the next 100 shots.  
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16. After the appropriate number of shots has been fired, the software will 

automatically prompt the user to save the data.  An appropriate naming 

convention should be selected for the data files. Previous test files have names 

which include the date, type of stone sample, and the number of the test. 

To mitigate the effect of shot-to-shot variation on the data, the ‘Accumulate Data’ 

option in the software is checked, and 100 shots are collected per sample, per location. 

This results in a single output spectrum per location, which is the sum of the spectra for 

all 100 shots. In the event of a low-emission shot, this additive data collection ensures 

that the overall trends and peaks in the output data remain largely unaffected. To conduct 

these tests in a timely manner, the continuous fire option on the laser is utilized rather 

than the single shot option. It has been found that the software does not encounter issues 

when this option is utilized. A sample spectrum obtained after firing laser shots on rock is 

shown in Figure 12. 

 

 

 

 

 

                                             Figure 12. A Sample Spectrum. 

Data Collection 

Calibration set. A standard set of data is collected to calibrate the model using 

PLSR. 35 rock types are used for calibration. For each rock type, 10 rock samples are 

randomly selected. Each rock was tested at 5 different locations. 200 shots are fired and 

to ablate the sample of surface contaminants and stabilize the light intensity collected for 
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the next 100 shots. This calibration set consists of 35 rock types as mentioned earlier with 

10 carbonates, 17 non-carbonates and 8 trap rocks as shown in Table 1. 

 

Table 1 

Aggregates Used for Calibration 

 Name of the aggregate Type of rock 

1 Allen Myers Carbonate Carbonate 

2 Andreas Lehigh Carbonate Carbonate 

3 Bechtelsville Gneiss Non-Carbonate 

4 Braen Franklin Carbonate Carbonate 

5 Carbonate Dolomite Carbonate 

6 Dyer Quarry Diabase Trap Rock 

7 EI Hamburg Gneiss Non-Carbonate 

8 Eureka Milford Quartzite Non-Carbonate 

9 Fanwood Trap rock Trap Rock 

10 Hanson Glen Gneiss Non-Carbonate 

11 Kingston Argillite Non-Carbonate 

12 Kingston Trap Rock Trap Rock 

13 Lehigh Asphalt Carbonate Carbonate 

14 New Hope Crushed Stone Carbonate Carbonate 

15 OW Trap rock Orange Basalt Trap Rock 

16 Westfield Trap rock Trap Rock 

17 Pioneer Laflin Quartzite Non-Carbonate 
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Table 1 (continued) 

 Name of the aggregate Type of rock 

18 Temple Quartzite Non-Carbonate 

19 Atkinson Quartzite Non-Carbonate 

20 Woodboro Carbonate Carbonate 

21 Plumstead Argillite Belt Non-Carbonate 

22 Plumstead Argillite Stockpile Non-Carbonate 

23 Tilcon Diabase Trap Rock 

24 New hope Carbonate Carbonate 

25 Eastern Wantage Carbonate Carbonate 

26 Tilcon Oxford Carbonate Carbonate 

27 Plumstead Argillite Lockatong Non-Carbonate 

28 Tilcon Oxford Gneiss Non-Carbonate 

29 Eastern Hamburg Gneiss Losee Non-Carbonate 

30 Moores Argillite Trap rock Ind Trap Rock 

31 Bechtelsville Gneiss 15179 Non-Carbonate 

32 Plumstead Argillite 15165 Non-Carbonate 

33 Tarheel Quartzite Non-Carbonate 

34 Kingston Trap rock 15219 Trap Rock 

35 Pyramid Gneiss Non-Carbonate 
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Each spectrum collected is the accumulated light data of 100 shots which is 

averaged to minimize the shot to shot variations. For each rock type, 50 spectrums are 

collected to capture the heterogeneity in the rocks. 

Testing set. A separate set of data is collected to validate the model and test the 

accuracy of each model. Initially, 5 samples were selected randomly and tested at 3 

locations on each sample. Later, it was found that 30 data points were required to obtain a 

more representative dataset. Hence, the testing set size was increased to 10 samples and 3 

locations each.  

Spectrum Analysis 

PLSR and various spectrum pre-processing techniques are used to analyze the 

data. The finalized methods are discussed below and all the models are compared with 

the Base Model. 

Base Model. In the Base Model, the spectral amplitude is obtained by averaging 

100 shots. Negative values which are considered signal noise are zeroed. Each spectrum 

is normalized by the total light intensity value, which is obtained by finding the area 

under the spectrum.   

Y Scaling. While various techniques for optimizing the PLS model were studied, 

Y-Scaling between 0 and 1, described in Tuckers et al. (2010) was found to be the most 

effective. This method involves subtracting the minimum values for each compound and 

dividing by the range of values of that compound and thereby scaling the Y variables of 

each rock between 0 and 1. This is done to force the PLSR algorithm to consider the 

concentrations of all compounds equally. The Y-variables in this study are the XRF 

values of the 35 rocks that are provided by NJDOT.  
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Split Training strategy. Split Training is a strategy employed to reduce the range 

of values in the calibration set to two or more narrow sets of values. Tuckers et al. (2010) 

suggested that to make an ‘initial guess’, researchers should use the broad-based model 

and use a narrow more specialized model for classification of the rock. For the broad-

based model (Base Model), 35 rocks types were used to make an initial guess of the 

composition.  Then the rocks were classified based on the initial guess and put into 

corresponding more precise models such as carbonate, non-carbonate and trap rocks. 

Initially, the rocks were classified into two categories namely carbonates and non-

carbonates, Non-carbonates included trap rocks. Later it was found to be more beneficial 

to classify the rocks into three categories. 

Combination model. Various techniques are implemented with the combination 

of the Split Training strategy, however, Y-Scaling and the Split Training strategy is found 

to be the most effective combination with the pre-processing techniques employed with 

the Base Model.  

Classification Methods for Split Training 

Based on the initial guess of the composition of each rock type using the Base 

Model, the rocks were classified using various classification methods. These methods are 

described in the following sections. 

One-Dimensional classification. The preliminary method used was the One-

Dimensional Classification method. This method looks at the percentage composition of 

CaO of each rock as predicted by the Base Model. A threshold of 25% or below is used 

to classify the rock as a non-carbonate and anything above 25 is classified as a carbonate. 

This threshold is chosen based on the percentage of Calcium Oxide in XRF values for 
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each rock. Figure 13 shows the percent of CaO present in various rocks that are calibrated 

and the rock classification. The classification of the unknown sample is determined based 

on the initial guess. Since the initial guess is made using the Broad-Base Model of all the 

rocks, the predictions are not accurate to classify the rocks based on CaO percentage. 

Researchers studied various other classification methods and found useful. 

 

 

 

 

 

 

 

 

 

 

                     Figure 13. The Classification of Rocks Based on CaO%. 

Two-Dimensional Line classification. This method is based on a graphical 

pattern observed when plotting the percent iron oxide (Fe2O3) and ratio of silica to 

calcium oxide (SiO2/CaO). Figure 3.9 shows of the data for carbonates and non-

carbonates. Carbonates with lower Fe2O3 and SiO2/CaO values tended to move closer to 

zero and non-carbonates with higher Fe2O3 and SiO2/CaO values tended to move away 

from both axes. A demarcation line separating carbonates and non-carbonates is found 

using trial and error maximizing the space between the threshold line and each data point. 

The equation of the line is:  
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𝑌 + 0.286𝑋 − 5 = 0      (3) 

Where, X is the percentage of Fe2O3 and Y is the ratio of percentages of SiO2 and CaO. 

When 𝑌 + 0.286𝑋 − 5 is less than zero, it is classified as carbonate and when it is greater 

than zero, it is classified as a non-carbonate. Figure 14 shows the classification of rocks 

using a threshold line based on the XRF values of the known rocks. 

 

 

 

 

 

 

 

 

 

 

               Figure 14. The Classification of Rocks Based on the Threshold Line. 

Again, the classification system is based on the XRF values, however, the initial 

guesses are not accurate enough to classify certain rocks. This method fails to classify the 

Lehigh Asphalt carbonate and Trap Rocks; this method is not implemented.  

Two-Dimensional Ratio classification. A Two-Dimensional Ratio classification 

method is implemented considering two compounds for classification. Carbonates tend to 

have higher percentages of Calcium Oxides (CaO) and non-carbonates tend to have 

higher percentages of SiO2. Hence a ratio of SiO2 to CaO of is used to distinguish 
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shown in Figure 15.  If the ratio is below 3, it is a Carbonate otherwise it is classified as a 

non-carbonate. This method proved versatile and is used for further analysis.  

 

 

 

 

 

 

 

 

 

 

 

             Figure 15. The Classification of Rocks Based on the Threshold Ratio of 3. 

Three-Way Split classification. A Three-Way Split classification method is 

considered using three compounds silica (SiO2), calcium oxide (CaO) and iron oxide 

(Fe2O3). The distinction between carbonates and non-carbonates is clearer when 

(SiO2/CaO) ^2 * Fe2O3 is used and can be used to distinguish a special type of non-

carbonate rocks called trap rocks. Hence the rocks are classified into 3 precise models 

Carbonates, Non-Carbonates and Trap Rocks. Figure 16 shows the classification of rocks 

into Carbonates, Trap Rocks and Non-Carbonates. Again, this classification threshold 

value is determined based on the XRF values of the known rocks as shown in figure. An 

initial guess is made using a Broad-Base Model to classify the unknown rock sample. 
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aggregates from the manufacturing source or may be due to the chemical composition 

changes due to the weathering of rocks. 

𝑆𝑖𝑂2

𝐶𝑎𝑂

2
∗ 𝐹𝑒2𝑂3 < 150 =  𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒𝑠     (4) 

150 <  
𝑆𝑖𝑂2

𝐶𝑎𝑂

2
∗ 𝐹𝑒2𝑂3 < 500 =  𝑇𝑟𝑎𝑝 𝑅𝑜𝑐𝑘𝑠   (5) 

500 <
𝑆𝑖𝑂2

𝐶𝑎𝑂

2
∗ 𝐹𝑒2𝑂3 =  𝑁𝑜𝑛 − 𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒𝑠   (6) 

If the value of (SiO2/CaO) ^2 * Fe2O3 is less than 150, it is a Carbonate. If it is 

between 150 and 500, then it is a trap rock; otherwise it is a non-carbonate. The threshold 

values are chosen based on XRF values and further modified based on the initial guess 

values. Three-Way Split classification is found to be the best method for an accurate 

prediction of chemical composition. 

 

 

 

 

 

 

 

 

 

 

 

            Figure 16. The Classification of Rocks Based on the Ratio Square Method. 

Split Training in combination with Y-scaling using a Three-Way split is found to 

be the efficient model and is selected for final use. The results of various methods described 

herein this chapter is discussed in detail in chapter 4.  
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Chapter 4 

Results and Discussions 

This chapter discusses the results obtained from the mineralogical analyses using 

the laser induced breakdown spectroscopy approach and the various methods described in 

Chapter 3. Results are analyzed using statistical error analysis methods. The portable 

equipment developed is tested under various environmental conditions during field 

testing to ensure that accurate results can be obtained when outside temperature varies.  

Spectrum Analysis Methods 

Base Model. Before any alternative pre-processing options are explored, a Base 

Model is developed for comparison purposes. In the Base Model, the 100 shot total 

spectra are reduced in amplitude as previously described, negative values are removed 

through applying center clipping with a zero threshold, and spectra are normalized to the 

total light emission, as previously stated. Only the five most significant compounds are 

reported for visual clarity. Unless otherwise noted, each method below includes these 

steps. 

Figures 17 through 21 shows the results for the Base Model. X-axis shows the 

predicted values or the LIBS spectrum analysis results. Y-axis shows the Known Values, 

in this case, the XRF values. A line is drawn which is the line of accuracy. If the data 

points come near to the line, then the results are more accurate. The data points of CaO 

and SiO2 are closer to the line while the data points of the minor compounds Al2O3, 

Fe2O3 and MgO are scattered away from the line. The results of the Base Model provide 

an assurance that the Partial Least Square Regression analysis method for the quantitative 
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prediction of chemical composition will work. This encouraged the researchers to explore 

further spectrum analysis methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Figure 17. Results of SiO2 of Base Model. 
 

 

                                  

 

 

 

 

 

 

 

 

                                      Figure 18. Results of Al2O3 of Base Model. 
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                                     Figure 19. Results of Fe2O3 of Base Model. 
 

 

 

 

 

 

 

 

 

 

 

                                             Figure 20. Results of CaO of Base Model. 
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                                Figure 21. Results of MgO of Base Model. 

Y Scaling. This method involves subtracting the minimum value of each 

compounds of all the aggregates’ XRF values before dividing all remainders by the range 

for that compound, thereby, reducing each to a value between 0 and 1. The reverse 

adjustments must be applied to the predicted values to convert them to actual results. The 

results for each compound are shown in Figure 22 through 26. The accuracy of the results 

had improved compared to the base model shown in Figures 17 through 21. The R square 

values for the Y Scaling model remains more or less the same as the Base Model with a 

small improvement in the minor compounds Al2O3, Fe2O3 and MgO. The data points of 

these minor compounds are slightly closer to the line compared to Base Model. Y Scaling 

prioritizes all compounds equally and therefore improves accuracy of the results. 
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                           Figure 22. Results of SiO2 of Y Scaling. 

 

 

 

 

 

 

 

 

 

 

                           Figure 23. Results of Al2O3 of Y Scaling. 
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                                     Figure 24. Results of Fe2O3 of Y Scaling. 

 

 

 

 

 

 

 

 

 

 

                                   Figure 25. Results of CaO of Y Scaling. 

 

 

 

R² = 0.4924

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

0 2 4 6 8 10 12 14 16

K
n

o
w

n
 V

a
lu

e
s

Predicted Values

R² = 0.8469

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

0 10 20 30 40 50 60 70

K
n

o
w

n
 V

a
lu

e
s

Predicted Values



www.manaraa.com

50 
 

 

 

 

 

 

 

 

 

 

 

 

                                       Figure 26. Results of MgO of Y Scaling. 

Split Training. Split Training is a strategy used to make an ‘initial guess’ using a 

broad Base Model and then directing the aggregates into a more specialized model for 

more precise predictions. In this case, aggregates are classified into carbonates or non-

carbonates based on the percentage of CaO in the initial guess of the rock. This strategy 

is applied along with the Base Model. Figure 27 through 31 shows the results for the 

model along with the stone’s broad classification; carbonate or non-carbonate. This 

strategy improved the accuracy of prediction over the Base Model and Y Scaling model 

as evidenced by the improvement in the R2 value obtained for each of the five principal 

chemical constituents. 
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                                 Figure 27. Results of SiO2 of Split Training. 

 

 

 

 

 

 

 

 

 

 

                                  Figure 28. Results of Al2O3 of Split Training. 
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                                   Figure 29. Results of Fe2O3 of Split Training. 

 

 

 

 

 

 

 

 

 

                                 Figure 30. Results of CaO of Split Training. 
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                             Figure 31. Results of MgO of Split Training. 

Split Training and Y Scaling. The results of combining the Split Training model 

and Y Scaling are shown in Figures 32 through 36. Better results are produced through 

the use of Y Scaling and Split Training. Split Training combined with Y Scaling 0:1 

produced accurate results and is selected as the analyses method for this research. This 

method uses a one-dimensional classification method based on the percentage of CaO. 

The predicted values are closer to the XRF values and hence it better fits the line of 

accuracy. SiO2 and CaO points are closer to the line of accuracy, yet other compounds 

have to be improved. Although, this was successful for several aggregates, Lehigh 

Asphalt Carbonate, is found to be classified incorrectly. Thus, various classification 

methods were further explored to improve classification of the rocks.   
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                              Figure 32. Results of SiO2 of Split-Y Scaling. 

 

 

 

 

 

 

 

 

 

 

                              Figure 33. Results of Al2O3 of Split-Y Scaling. 
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                              Figure 34. Results of Fe2O3 of Split-Y Scaling. 

 

 

 

 

 

 

 

                                 Figure 35. Results of CaO of Split-Y Scaling. 
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                                Figure 36. Results of MgO of Split-Y Scaling. 

Classification Methods for Split Training 

One-Dimensional classification. One-Dimensional classification is based on the 

percentage of CaO in the initial guess. Figure 37 through 41 shows the results utilizing 

the One-Dimensional classification method. The initial prediction values of CaO 

percentage of Andreas Lehigh Carbonate is 16.83% and of Lehigh Asphalt Carbonate is 

11.12% which are less than the threshold ratio (25%) as shown in Table 2. Because of the 

low CaO content in Andreas Lehigh Carbonate and Lehigh Asphalt Carbonate, these 

rocks are not identified as Carbonates. Further study on classification system resolved 

this problem of classifying the low Calcium Oxide carbonates into right model.  
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Table 2 

Outliers of One Dimensional Classification 

Outlier Threshold Value Classified as: 

Lehigh Asphalt Carbonate 11.12 Non-Carbonate 

Andreas Lehigh Carbonate 16.83 Non-Carbonate 

 
 
 
 

 

 

 

 

 

 

 

 

                       Figure 37. Results of SiO2 Using Calcium Oxide Classification. 
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                           Figure 38. Results of Al2O3 Using Calcium Oxide Classification. 

 

 

 

 

 

 

 

 

 

 

                    Figure 39. Results of Fe2O3 Using Calcium Oxide Classification. 

 

R² = 0.72

0.000

5.000

10.000

15.000

20.000

25.000

0 2 4 6 8 10 12 14 16 18 20

K
n

o
w

n
 V

a
lu

es

Predicted Values

R² = 0.5011

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

0 2 4 6 8 10 12 14 16

K
n

o
w

n
 V

a
lu

es

Predicted Values



www.manaraa.com

59 
 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 40. Results of CaO Using Calcium Oxide Classification. 

 

 

 

 

 

 

 

 

 

 

                   Figure 41. Results of MgO Using Calcium Oxide Classification. 

Two-Dimensional Line classification. Figure 42 through 46 shows the results of 

Line Classification method. This showed the Two-Dimensional Line classification 
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method failed to classify carbonates and non-carbonates. This was because the trap rocks 

overlapped with both the Carbonates and Non-Carbonates models, are were therefore 

incorrectly classified. Lehigh Asphalt Carbonate was incorrectly classified as a Non-

Carbonate and most of the trap rocks classified as Carbonates as shown in Table 3. This 

method gave the lowest R Square value; therefore, it was no longer used. 

 

Table 3 

Outliers of Two-Dimensional Line Classification 

Outlier Threshold Value Classified as: 

Bechtelsville Gneiss 15179 -0.53705 Carbonates 

Dyer Quarry Diabase -8.788 Carbonates 

Outlier Threshold Value Classified as: 

Hanson Glen Gneiss -13.379 Carbonates 

Kingston Argillite -52.283 Carbonates 

Kingston Trap Rock -4.78 Carbonates 

Plumstead Argillite 

Stockpile 

-12.371 Carbonates 

Temple Quartzite -4.1864 Carbonates 

Tilcon Diabase -7.0635 Carbonates 
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                                  Figure 42. Results of SiO2 Using Line Classification. 

 

 

 

 

 

 

 

 

 

 

                             Figure 43. Results of Al2O3 Using Line Classification. 
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                     Figure 44. Results of Fe2O3 Using Line Classification. 

 

 

 

 

 

 

 

 

 

 

                          Figure 45. Results of CaO Using Line Classification. 
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                          Figure 46. Results of MgO Using Line Classification. 

Two-Dimensional Ratio classification. Figures 47 through 51 show the results 

for the Ratio classification method. Carbonates except Lehigh Asphalt Carbonate are 

classified correctly for split training purposes compared to the Two-Dimensional Line 

classification method (See Table 4). However, the accuracy of prediction of trap rocks 

and non-carbonates are yet to be improved. For this purpose, a precise model for trap 

rocks and non-carbonates must be defined which is discussed in the next section.  

 

Table 4 

Outliers of Two-Dimensional Ratio Classification 

Outlier Threshold Value Classified as: 

Lehigh Asphalt Carbonate 17.668 Non-Carbonate 
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                              Figure 47. Results of SiO2 Using Ratio Classification. 

 

 

 

 

 

 

 

 

 

 

                            Figure 48. Results of Al2O3 Using Ratio Classification. 
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                        Figure 49.  Results of Fe2O3 Using Ratio Classification. 

 

 

 

 

 

 

 

 

 

                            Figure 50. Results of CaO Using Ratio Classification. 
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                        Figure 51. Results of MgO Using Ratio Classification. 

Three-Way Split classification. The Three-Way Split classification technique 

discussed in Chapter 3 is the most effective way to classify the aggregate rocks. Based on 

the initial guess of composition based of the Base Model, the rocks are classified into 

three broad categories namely carbonates, trap rocks and non-carbonates.  

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑉𝑎𝑙𝑢𝑒 =  (
𝑆𝑖𝑂2

𝐶𝑎𝑂
) 2 ∗ 𝐹𝑒2𝑂3 

The squaring effect of the ratio set apart carbonates from non-carbonates. Lehigh 

Asphalt Carbonate is again classified as Non-Carbonate which later identified as a 

contaminated rock by NJDOT. Some trap rocks are classified as non-carbonates as shown 

in Table 5. This can be explained by the metamorphism of trap rocks due to the 

weathering process where the CaO and Fe2O3 contents are washed away.  Figure 52 
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through 56 shows the results for the split training using the Three Way Split classification 

technique. 

 

Table 5 

Outliers of Three-Way Split Classification 

Outlier Threshold Value Classified as: 

Fanwood Trap Rock 6539.836 Non-Carbonate 

Kingston Trap Rock 8052.592 Non-Carbonate 

Kingston Trap Rock 15219 991.4638 Non-Carbonate 

OWT Orange Basalt 1744.469 Non-Carbonate 

Lehigh Asphalt Carbonate 8411.455 Non-Carbonate 

Tilcon Diabase 18852.28 Non-Carbonate 

Westfield Trap Rock 1189.668 Non-Carbonate 
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                    Figure 52. Results of SiO2 Using Ratio Square Classification. 

 

 

 

 

 

 

 

 

 

 

                  Figure 53. Results of Al2O3 Using Ratio Square Classification. 
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                 Figure 54. Results of Fe2O3 Using Ratio Square Classification. 

 

 

 

 

 

 

 

 

 

                   Figure 55. Results of CaO Using Ratio Square Classification. 
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                      Figure 56. Results of MgO Using Ratio Square Classification. 

Accuracy of Models 

The accuracy of each model is determined using R square values and ANOVA 

analysis.  

R Square values. R2 values show the percentage of variation of the predicted 

results. When the R2 value is higher, the model fits the data better. Table 6 shows the R2 

values for each model compared for each compound and Table 7 shows the R2 values for 

carbonates, trap rocks and non-carbonates for each split training classification methods. 

Split Training with Y Scaling combined with the Three Way Split Classification shows 

the highest R2 values. Y Scaling improved the accuracy of minor compound predictions 

since this method considered all compounds with equal priority. 
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Table 6 

 

R Square Values of Each Method Against Each Compound 

R Square Value SiO2 Fe2O3 Al2O3 CaO MgO 

Base Model .8589 .6103 .3691 .8421 .4914 

Y Scaling .8722 .6956 .4924 .8469 .6178 

Split Training .9109 .753 .5276 .9271 .7123 

Split Training with Y Scale 

One Dimensional 

Classification 

.9021 .72 .5011 .9829 .7251 

Split Training with Y Scale 

Two-Dimensional Line 

Classification 

.7341 .5261 .4735 .6861 .536 

Split Training with Y Scale 

Two-Dimensional Ratio 

Classification 

.914 .6955 .5289 .9136 .7211 

Split Training with Y Scale 

Three-Way Split 

Classification 

.9119 .7529 .8015 .9081 .7064 
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Table 7 

R Square Values of Carbonates, Trap Rocks and Non-Carbonates for Various Split 

Training Methods 

R Square Value Carbonates Trap Rocks Non-Carbonates 

One Dimensional Classification .806 .873 .983 

Two-Dimensional Line 

Classification 

.819 .687 .710 

Two-Dimensional Ratio 

Classification 

.932 .713 .978 

Three-Way Split Classification .932 .747 .969 

 

ANOVA (Analysis of Variance). ANOVA is a statistical method developed by 

Ronald Fisher in 1918 to analyze the variance of more than two groups. This is also 

called the Fisher analysis of variance. This is an extended version of the t- and z-test. The 

assumptions considered while running ANOVA for the prediction results are as follows: 

1. The weighted average errors of each compound of aggregates are normally 

distributed. 

2. Independence of cases: Each LIBS test at various locations and on different 

samples are independent of each other.  

3. Homogeneity: The variance between the aggregate groups are approximately 

equal. 

A two-way ANOVA analysis is conducted on the average weighted error of each 

compound for all aggregates.   
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ANOVA for various PLSR models. The two-way ANOVA analysis is conducted 

on the results for the various spectrum analysis methods. Figure 57 through 59 shows the 

results of the ANOVA analysis to assess the accuracy of the different spectrum pre-

processing techniques and split training strategies. X-axis represents the P-value 

associated with each analysis method which is the significance level of the interaction 

term. Y-axis represents each method of analysis as follows: 

1- Base Model  

2- Y-Scaling  

3- Split Training  

4- Split Training with Y-Scaling  

When the P-value on the X-axis is lower, this indicates that the method is 

successful. Figure 57 shows that Split Training with Y-Scaling (#4 in Figure 57) is the best 

method because it has the lowest error for carbonates. Figure 58 for trap rock and Figure 

59 for non-carbonates also indicates that method #4 is the most accurate.  

 

 

 

 

 

         Figure 57. ANOVA Results of Various Models for Carbonates. 
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                          Figure 58. ANOVA Results of Various Models for Trap Rocks. 

 

 

 

 

 

 

               Figure 59. ANOVA Results of Various Models for Non-Carbonates. 

ANOVA for various classifications. Two-way ANOVA is also conducted to 

determine the relative accuracy of the various classification methods. Figures 60 through 

62 show the results from the ANOVA analysis for various split training classification 
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methods. X-axis represents the error of each classification method. Y-axis represents 

each method of classification as follows: 

1- One Dimensional classification  

2- Two- Dimensional Line classification 

3- Two- Dimensional Ratio classification 

4- Three-Way Split classification  

Figure 60 displays the results of the ANOVA analysis for carbonates. Methods #3 

and #4 are equally accurate with the lowest error. ANOVA analysis on trap rocks (Figure 

61) shows that method #1 is more accurate compared to the other three methods. 

ANOVA analysis on non-carbonates (Figure 62) shows that methods #1, #3 and #4 are 

significantly different from method #2. However, method 4 is selected because it has 

slightly less error than methods #1 and #3.  

 

 

 

 

 

 

 

 

 

 

          Figure 60. ANOVA Results of Various Split Training Methods for Carbonates. 
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     Figure 61. ANOVA Results of Various Split Training Methods for Trap Rocks. 

 

 

 

 

 

 

 

         Figure 62. ANOVA Results of Split Training Methods for Non-Carbonates. 

High-Pass Filter of LIBS Spectrum 

In order to improve the accuracy of the LIBS-PLSR analysis model, a filtering 

technique is implemented to eliminate the Bremsstrahlung baseline while preserving the 
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remaining information. A MATLAB code is developed that will filter the spectral data 

obtained.  

Moving Average Subtraction (MAS).  To remove the baseline of the LIBS data, 

a moving average of the data is created with an adjustable value, N, which will take the 

average of the N values before and after each data point between N:(12,288-N). Values 1: 

N and (12,288-N): 12,288 are assigned a zero value. By adjusting the N value, the peaks 

of the original data are eliminated, leaving only the baseline. This resulting baseline is 

then subtracted from the original data, and all negative values of intensity are set to zero. 

This method removes the baseline height from the maximum intensity of the peaks with 

the assumption that the relevant data is shifted in intensity by the baseline. Figures 63 and 

64 show the effect of moving average subtraction. 

 

 

 

 

 

 

 

 

Figure 63. Left to Right: Unfiltered Atkinson Quartzite Data, Moving Average of Data, 

Subtraction of Data, Subtraction of Moving Average from Original Data, Filtered Data 

Adjusted to Eliminate Negative Values. 
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Figure 64. Subtraction from MAS Filtration Method Showing the Moving Average 

N=180 to Best Conserve Relevant Information. 

 

Moving Slope Analysis (MSA). An array consisting of 12,288 zero points is 

created. The original data is then scanned point to point to determine the instantaneous 

slope. If the slope, ((J+1)-J)/1, is greater than or equal to 100, the corresponding J point in 

the zero array is assigned the value. By adjusting the slope value, the original peak data is 

preserved. This method preserves relative intensity when removing the baseline, with the 

assumption that the baseline overshadows relevant information. 

The effectiveness of the MAS filtering technique is maximized by varying the N 

value used for the average to determine which value will result in the greatest 

preservation of intensity peak data. An average of 361 data points surrounding each 

individual point, N=180 value is shown to best preserve the data while still eliminating 

the baseline as shown in Figure 65. The MSA filtering technique is maximized similarly 

by determining the slope value that results in the most effective conservation of the sharp 

intensity peak data as shown in Figure 66. The effectiveness of the filters is determined 

by comparing the results of the filtered and unfiltered models to the XRF values. A 

student’s t-test was performed with 95% confidence that the true value lies within the 
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uncertainty of the mean. Figures 67 through 69 show the results of MSA and MAS 

filtering methods. The figures show that the results of the unfiltered data, MAS N 180 

filter data and MSA slope 100 filter data are within the 95 percent confidence interval, 

hence significantly not different. Either technique removed the broadening of the 

spectrum but it did not make any improvements in the predicted results.  

 

 

 

 

 

 

Figure 65. Left to Right: Unfiltered Atkinson Quartzite Data, Moving Slope Analysis 

Data, Showing Preservation of Intensity Information, Filtered Data Subtracted from 

Unfiltered Data Leaving Only the Baseline. 

 

 

 

 

 

 

 

Figure 66. Left to Right: Unfiltered Atkinson Quartzite Data, Moving Slope Analysis 

Preserving Data with Slope≥10, Moving Slope Analysis Preserving Data with Slope≥100, 

Moving Slope Analysis Preserving Data with Slope≥1000. 
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Figure 67. Comparing the Output of the PLSR Calculation of Atkinson Quartzite, Error 

Bars Showing Uncertainty of Data with 95% Certainty. 

 

 

 

 

 

 

 

 

Figure 68. Comparing the Output of the PLSR Calculation of Carbonate Dolomite, Error 

Bars Showing Uncertainty of Data with 95% Certainty. 
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Figure 69. Comparing the Output of the PLSR Calculation of EI Hamburg Gneiss, Error 

Bars Showing Uncertainty of Data with 95% Certainty. 

 

Frequency cut off and slope detection. This method uses a high-pass filter, in 

which each laser pulse reading has an associated cutoff frequency. The values lower than 

this cutoff will be removed from the data. The assumption is that this technique will 

remove any noise in the data generated by these frequencies. The goal of this method is 

that the identified broadening of the spectrum will be removed. This method will find the 

standard deviation of the derivative of LIBS spectra. Using the standard deviation and a 

chosen slope threshold, an edge detection system will be utilized to differentiate the 

abrupt spikes in the data as well as gradual increases. The gradual increases in the spikes 

are assumed to create the broadening of the spectrum and hence it is filtered out. All 

slope changes in the ‘Y’ direction that are not equal to or greater than the chosen slope 

are filtered out because any small or gradual changes in the ‘Y’ direction of the data are 

considered to be noise. Figure 70 shows the filtered and unfiltered spectrums after high-

pass filtering. Although the broadening of the spectrum is successfully removed, the 

analysis of the filtered data does not improve the accuracy of the results. Therefore, 
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filtering of the spectral data is not done before analysis of the data. Figure 71 shows the 

comparison of results using filtered and unfiltered spectrums and shows that there is very 

little improvement in accuracy.  

Although the high-pass filter removes the broadening of the spectrum, there is no 

improvement in the model predictions. Hence, the idea of removing the spectral 

broadening is no longer considered.  

 

 

 

 

 

 

 

 

 

 

                             Figure 70. High Pass Filtering of LIBS Spectrum. 
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Figure 71. Results of High Pass Filtering of LIBS Spectrum 

 

Determination of a Suitable Sample Size 

Testing set size is determined based on the number of samples required for a 

stabilized prediction. Figure 72 shows predictions of Woodboro Carbonate for various 

testing set size. X-axis shows the total number of testing data used for each prediction 

and Y-axis shows the predicted values for the percentage of SiO2. As per the figure, a 

minimum of 30 data points is recommended. The number of samples tested is of greater 

importance than the number of locations tested per sample. Thus, a testing set size of 10 

samples with 3 locations per sample is selected.  
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                                           Figure 72. Testing Set Size. 

Development of a User-Friendly Program 

A Graphic User Interface (GUI) program is developed using MATLAB to analyze 

the LIBS spectrum. Figure 73 shows the GUI for the Laser Data Analysis Tool. It gives 

options for the various operating modes such as training the model, testing single 

aggregates at a time and testing a set of aggregates. In the training mode, number of PLS 

components are calculated by default or by manual input. For each testing mode, testing 

threshold defaults are 150 for carbonate and 500 for non-carbonate. Carbonate threshold 

classify rocks into Carbonates and Non-Carbonates while non-carbonate threshold 

classifies rocks between Non-Carbonates and Trap Rocks. A custom threshold option is 

also provided. The user can select the input data and run the program. A help option is 

also provided to address any questions users would have about running the program. The 

directory to which results will be saved can be changed using Settings.  
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A GUI for updating the calibration data is also provided. Figure 74 shows the 

interface of the update calibration tool. It provides the options to input the laser 

calibration data as a folder and the corresponding XRF data as an excel spreadsheet.  

A stand-alone deployable software for these programs has been developed which 

could be installed and used in any system without MATLAB. This software program will 

not allow users to make changes to the code or available features. 

 

 

 

 

 

 

 

 

                                              Figure 73. Laser Data Analysis Tool. 

 

 

 

 

 

 

 

 

                                        Figure 74. Update Calibration Tool. 
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Testing of the Portable Equipment to Assess Ruggedness and Impact of 

Environmental Factors 

Vibration/impact test. To test the durability and the resiliency of the portable 

laser system, the equipment is loaded onto the back of a truck which is then subjected to 

high speeds and roadways with poor driving conditions. Sudden jerks and vigorous 

impacts due to potholes, rutting, and overall inconsistencies in the roadway, as well as 

abrupt braking are used to simulate realistic transportation conditions. The following tests 

were conducted on the same samples of the same batch of aggregates before and after the 

vibration/ impact testing. Figures 75 through 77 depict the results from the vibration/ 

impact testing on Carbonate Dolomite, Plumstead Argillite Belt and Bechtelsville Gneiss. 

The results are similar before and after the vibration/impact field test. The small 

variations can be attributed to the typical shot-to-shot variations within the aggregate 

samples and are within the experimental error thresholds.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        Figure 75. Vibration/ Impact Test Results, Carbonate Dolomite. 
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             Figure 76. Vibration/ Impact Test Results, Plumstead Argillite Stockpile. 

 

 

 

 

 

 

 

 

 

 

 

               Figure 77. Vibration/ Impact Test results, Bechtelsville Gneiss 15179. 

 

0

10

20

30

40

50

60

1 2 3 4 5 6

Plumstead Argillite Stockpile

Before field test

After field test

XRF

0

10

20

30

40

50

60

1 2 3 4 5 6

Bechtelsville Gneiss 15179

Before field test

After field test

XRF



www.manaraa.com

88 
 

Temperature test. The equipment is kept in the field and allowed to equilibrate 

to the atmospheric temperature during a 4-hour time frame. Tests are then conducted on 

the same sample of aggregates from the same stockpile of rocks at various temperatures 

to depict the field conditions. Finally, these results are compared with the results obtained 

in the laboratory at a room temperature of 68 °F. 

Figures 78 through 79 show the results of temperature testing for Carbonate 

Dolomite and Plumstead Argillite stockpile. The results show a wide variation of results. 

Testing at temperatures of approximately 79 °F and 68 °F give results comparable to the 

XRF values. However, testing at 54 °F and 32 °F show a wide variation from accepted 

values and therefore it is concluded that this equipment should be utilized at temperatures 

above 60 °F and under low humidity conditions.  

The poor performance of the equipment, at lower temperatures is explained by the 

spectrums obtained at temperatures 34 °F and 68 °F as shown in Figures 80 and 81. The 

first and third fiber optic channels of the spectrometer give negative light intensities. The 

Aurora module of the spectrometer is not specified for use outside of the laboratory in 

freezing temperatures or in humid conditions, which affects the data collection and the 

results. The ultra Quantel laser is manufactured for harsh environments and an anti-freeze 

cooling reagent is used as coolant. This minimized the negative effects of temperature on 

the laser. Some spectrum processing is done to shift the negative values of the spectrum, 

but it did not improve the analysis. 
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                     Figure 78. Temperature Test Results, Carbonate Dolomite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 79. Temperature Test Results, Plumstead Argillite Stockpile. 
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                              Figure 80. LIBS Spectrum Obtained at 34 deg. F. 

 

 

 

 

 

 

 

 

 

 

 

                Figure 81. LIBS Spectrum Obtained at 68 deg. F. (Laboratory Condition). 

 

Effect of aggregate moisture content on results. The sample’s moisture content 

was studied to see if the results are affected. The aggregate samples are soaked in water 

for 24 hours. They are then wiped with a damp cloth and no other sample preparation is 

done before testing. These samples are tested before and after soaking. Figures 82 and 83 

show the results of the tests. X-axis represents the test results before soaking and Y-axis 

represents the test results after 24 hours of soaking. Each point represents the compounds 

predicted. The figures show that test’s before and after soaking gives the same results and 

the moisture content of the sample doesn’t affect the LIBS test results. This concludes 

that the samples collected after a rainy day will not impact the accuracy of the results.  
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              Figure 82. Aggregate Moisture Content Test Results, Carbonate Dolomite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 83. Aggregate Moisture Content Test Results, Plumstead Argillite Stockpile. 
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Building a more affordable and portable equipment setup. Since the most 

expensive piece of equipment in the setup is the spectrometer, testing is done using a 

high, as well as a low-resolution spectrometer. The low-resolution spectrometer is much 

more affordable than the current high resolution spectrometer that is being used. Data is 

collected from the same sample and location of an aggregate of Atkinson Quartzite. The 

Aurora module of high resolution spectrometer has a resolution of 12288 points. Figure 

84 shows the results for the lower resolution spectrometer. Although various resolutions 

give more or less the same result as that of the higher resolution spectrometer, the results 

are slightly better for lowest resolution (1/20th). This may be due to the reduced 

sensitivity of the low-resolution spectrometer to the signal noises. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 84. Testing of the Equipment Using Low Resolution Spectrometer. 
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is feasible for field testing. This equipment can be made more affordable in future using a 

lower resolution spectrometer.  
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Chapter 5 

Conclusions 

Summary of Findings 

Throughout this study, Laser Induced Breakdown Spectroscopy (LIBS) is used to 

obtain characteristic light spectra for various types of aggregates collected from various 

quarries and sources in New Jersey and surrounding states. This involves firing a high 

energy, short laser pulse at a sample to vaporize a small amount of the sample material, 

which then fluoresces due to the high temperature of the resulting plasma. The emitted 

light contains a unique spectrum of wavelengths corresponding to the elements present in 

the aggregate. X-Ray Fluorescence (XRF) tests were also conducted on each sample by 

the NJDOT and served as the source of calibration data. Partial Least Square Regression 

analysis is used to develop the predictive model for the laser spectra utilizing the known 

XRF values that are provided. 

Various tests were conducted to finalize the system standards and specifications 

for the LIBS setup. The most reliable timing was determined to use a flashlamp-Q-Switch 

delay of 180 µs and a spectrometer delay of 6.3 µs for the Ultra Quantel laser. A 

spectrum of accumulated data of 100 laser pulses were collected to accommodate the 

variability in test data due to randomness in the system and to minimize the shot to shot 

variations due to aggregate heterogeneity. 

Various spectrum preprocessing methods were utilized for this research study and 

the most optimal methodology is determined to be Split Training with Y Scaling. 

Negative light intensities assumed as noise in the spectrum are zeroed. Each spectrum is 

normalized based on the total light intensity such that the sum of all light intensity values 
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is 1. Reverse adjustments are made on the final predicted values. Y-Scaling has applied to 

the X-Ray Fluorescence chemical composition by scaling the data of each composition 

between 0 and 1. This will force the PLSR algorithm to consider all the compounds with 

equal priority.  

The preprocessed spectra are then used to develop functional models using PLSR. 

An optimum number of PLS components are used to calibrate each models. An initial 

guess of the chemical composition of unknown sample is made using a broad-based 

Model. This broad-based Model is developed using all the aggregates in the calibration 

data set. The rocks are then classified into Carbonates, Trap Rocks or Non-Carbonates 

using a Three-Way Split classification. The final predictions are made using these precise 

models for better accuracy. Various error analysis is done to ensure the accuracy of the 

model. The conclusions from the model testing are the following.  

• Split Training with Y-Scaling using a Three-Way Split classification is found to 

be the best model with an overall accuracy of 90%. Table 8 shows how accurate 

the model fits the data.  

• 35 rocks were used to calibrate the model with 10 Carbonates, 8 Trap Rocks and 

17 Non-Carbonates. 
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Table 8 

Accuracy of the Model Selected for Final Use 

R Square Value SiO2 Fe2O3 Al2O3 CaO MgO 

Split Training with Y Scale 

Three-Way Split Classification 

.9119 .7529 .8015 .9081 .7064 

 

• Three unknown rocks, North Church Franklin Gravel and Westfield Gravel and 

Westerly Granite were tested using the model and the predicted result has an R 

Square value of 0.9249. These aggregates consist of water transported particles of 

rocks are very heterogeneous and are not used for calibrating the model. 

• A standard testing set size is determined as 10 samples with 3 locations per 

sample to represent the aggregate stockpile. The initial 200 laser shots are 

neglected to eliminate the surface dust contamination and also to stabilize the 

peak light intensity collected. The accumulated data of succeeding 100 shots are 

saved per locations. 

• No sample preparation is needed for this testing. Brush the sample with a damp 

cloth to remove the surface dust.  

• Testing for a single stone type takes less than an hour to collect the LIBS 

spectrum, analyze the data and predict the result.  

Various high pass filtering methods are considered to remove the broadening of 

the spectrum. This idea of smoothing the spectrum is not pursued further in this study as 
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it did not produce significant improvement in test results. A user-friendly GUI program is 

developed for easy analysis of LIBS data.  The user can browse the data needed to be 

analyzed. Manual input options are also provided for the number of PLS components and 

for the carbonate, non-carbonate threshold values. Software for the data analysis program 

is developed, named “Laser Analysis Tool,” which can be installed and used in any 

system without MATLAB. A program for expanding the calibration set in future is 

developed, which will automatically create the analysis input file needed for the model 

training.  

The equipment is made portable and can transported in the back of a vehicle and 

taken to the field for on-site testing. It is then tested for various field conditions to ensure 

the feasibility of LIBS testing as a portable tool. The summary of the portable equipment 

test is found to be the following. 

• The equipment is built to handle the vibrations and the impact caused by poor 

roadway and driving conditions.  

• The equipment is tested for various atmospheric temperatures by allowing it to 

cool/heat to the atmospheric temperature in 4hrs. It is found that the portable 

equipment gives reliable test results at 600F or above. The equipment should be 

stored in a temperature controlled room during winter to avoid the damage to the 

spectrometer caused by the freezing weather.  

• The aggregate samples with high moisture content were also tested with no 

impact on the accuracy of the results obtained.  

• This equipment is also tested with a low cost, temperature controlled, lower 

resolution spectrometer (Flame Miniature Spectrometer from Ocean Optics) and 
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found producing similar results with the same accuracy. Thus the equipment can 

be made 50% more affordable in the future.  

A manual is developed for the end users that includes the safety precautions, 

operation and maintenance of the equipment and trained the NJDOT personnel to equip 

them to use the equipment.  

In conclusion, 

• Laser Induced Breakdown Spectroscopy can be used to quantify the chemical 

composition of aggregate stone samples. 

• Partial Least Square Regression Analysis can be used to develop predictive 

models to predict the aggregate composition. 

• Split Training with Y Scaling with a Three-Way Split classification produce 

accurate results. 

• A Graphical User Interface program facilitates rapid model testing and future 

refining of the models. 

• The equipment is feasible and affordable as a portable tool for field use and is 

efficient in terms of time and cost compared to XRF. 

Future Recommendations 

A lower resolution spectrometer can be used for the LIBS testing which will serve 

the purpose and ensure the accuracy of the results. This spectrometer will be a solution to 

make it more portable. Its temperature controlled feature helps to use the equipment in a 

wide range of atmospheric weather conditions.  
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Appendix A 

X-Ray Fluorescence Data of Rocks  

Below is a summary of XRF results provided by the NJDOT. Note that this list 

only includes samples used for model calibration. Additional samples and chemical 

composition results have recently been received and will be incorporated into future 

models. 

Rock 

Names 

SiO

2 

Al2

O3 

Fe2O

3 

CaO MgO Na2

O 

P2O5 TiO2 K2O MnO 

Allen 

Myers 

Carbonat

e 

13.

8 

6.72

5 

2.195 43.2

5 

31.3 0 0.748

5 

0.226

5 

1.235 0.091

8 

Andreas 

Lehigh 

Carbonat

e 

42.

75 

19.8 5.485 20.8 4.985 0.58

55 

0.687 0.816

5 

3.185 0.072 

Bechtesvi

lle Gneiss 

51.

55 

15.3 9.61 5.3 5.945 8.27

5 

1.135 1.435 1.02 0.115

5 

Braen 

Franklin 

Carbonat

e 

1.8

1 

0.58

1 

1.405 71.3 23.7 0 0.572

5 

0 0.058

45 

0.2 

Carbonat

e 

Dolomite 

12.

5 

2.97 2.42 55.5 24 0 0.870

5 

0.179

5 

1.3 0.066

85 

Dyer 

Quarry 

Diabase 

46.

8 

17.5 10.65 7.62

5 

7.285 6.79

5 

0.901

5 

1.455 0.594

5 

0.164

5 

EI 

Hamburg 

Gneiss 

57.

5 

14.7 8.34 5.79

5 

2.975 4.11

5 

1.9 1.25 2.86 0.092

25 

Eureka 

Milford 

Quartzite 

65.

95 

20.1

5 

4.75 0.99 2.98 1.35

5 

0.474 0.640

5 

2.285 0.099

9 

Fanwood 

Traprock 

43.

2 

15.9

5 

10.75 8.22 11.25 8.45 0.711

5 

0.889 0.247 0.167 

Hanson 

Glen 

Gneiss 

54.

15 

13.1

5 

11.85 6.71

5 

3.295 3.20

5 

2.185 1.9 2.215 0.178 
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Kingston 

Argillite 

41.

45 

17.8 12.1 7.32 8.17 8.59

5 

1.003 0.793

5 

2.11 0.238 

Kingston 

Trap 

Rock 

45.

95 

16.7 12.06

5 

10.4

65 

7.275 4.23

5 

0.985 1.161 0.65 0.202 

Lehigh 

Asphalt 

Carbonat

e 

35.

85 

7.25 8.885 35.2 3.195 0.77

5 

1.27 1.41 3.965 0.124 

New 

Hope 

Crushed 

Stone 

Carbonat

e 

17 6.06

5 

2.05 44.1

5 

26.7 1.44

5 

0.333

6 

0.339

5 

1.475 0.085

8 

OW 

Traprock 

Orange 

Basalt 

43.

2 

16.1 10.25 8.57

5 

10.4 9.41 0.676

5 

0.826

5 

0.254

5 

0.188 

Westfield 

Traprock 

45.

3 

17.1 12.25 7.88 7.215 7.62

5 

0.728 0.781

5 

0.786 0.196

5 

Pioneer 

Laflin 

Quartzite 

66.

2 

24.3

5 

3.145 0.37

75 

1.265 0.55

95 

0.379

5 

0.654 2.795 0.066

6 

Temple 

Quartzite 

87.

8 

8.87 0.257

5 

0.13

65 

0.469 0 0.378 0.904 0.931 0 

Atkinson 

Quartzite 

64.

8 

15.0

5 

9.39 1.21 1.575 0.75

6 

1.64 0.545 3.79 0.245 

Woodbor

o 

Carbonat

e 

14.

85 

5.23 3.055 69.6

5 

3.11 0 0.932 0.577

5 

1.865 0 

Plumstea

d 

Argillite 

Belt 

49.

75 

16.4 12.95 6.95

5 

2.055 3.58

5 

1.795 1.345 4.015 0.234

5 

Plumstea

d 

Argillite 

Stockpile 

47.

25 

17.6 11.9 8.34 2.93 3.98 1.57 1.17 4.17 0.219

5 

Tilcon 

Diabase 

46.

95 

16.4

5 

13.95 11.4 3.805 3.43

5 

1.53 1.325 0.714

5 

0.195 

Newhope 

Carbonat

e 

17.

9 

5.52 3.585 54.4

5 

14.05 0.78

85 

0.943 0.574 1.71 0.118 
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Eastern 

Wantage 

Carbonat

e 

14.

5 

4.99 1.565 42.4

5 

33.95 0 0.574 0.187

5 

1.55 0.029

5 

Tilcon 

Oxford 

Carbonat

e 

7.2

9 

1.96 5.755 74.0

5 

8.47 0 0.742 0.356 0.301 0.336 

Plumstea

d 

Argillite 

Lockaton

g 

50.

1 

18.5

5 

10.2 6.93 2.52 4.55 1.48 1.165 3.645 0.186 

Tilcon 

Oxford 

Gneiss 

64.

6 

13.0

5 

5.545 4.93

5 

1.79 4.98 1.38 0.697 1.83 0.108

5 

Eastern 

Hamburg 

Gneiss 

Losee 

70.

4 

13.9 2.27 4.65

5 

0.847

5 

4.33 1.31 0.255 1.77 0.045

75 

Moores 

Argillite 

Traprock 

Ind 

33.

55 

9.4 32.15 11.8

5 

1.08 0.23

55 

1.27 2.35 6.135 0.516 

Bechtelsv

ille 

Gneiss 

15179 

48.

6 

15.7

5 

9.93 5.00

5 

8.025 8.84 0.605 1.115 1.53 0.107

5 

Plumstea

d 

Argillite 

15165 

49.

05 

19.7 6.61 4.52

5 

4.995 10.1

5 

0.908 0.698

5 

2.64 0.128

5 

Tarheel 

Quartzite 
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Appendix B 

Algorithm for Three-Way Split Classification 

plsregress function as per MATLAB 2015 (Copyright 2007-2010 The MathWorks, Inc.) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% function laseranalysis(rock_data, PLS, ncomp_in, mode_custom_thresh) 

% 

% This function handles the training and testing of a PLS model to predict 

% the chemical components of an observed data set. In training mode, this 

% function will take the observed X data and known Y data as well as the 

% number of PLS components to use and train a PLS model, saving the beta 

% matrix for use in testing. In testing mode, the function loads the saved 

% beta matrix and creates a predicted chemical composition for the observed 

% data set. 

% 

% Inputs: 

%   rock_data - struct containing X and Y data with same number of 

%   observations and corresponding rows aligned (training) or a matrix 

%   containing all of the X data (testing) 

% (X - observed data set. In training this contains the spectrometer data 

% for all aggregate stones. In testing, this contains the spectrometer  

% data for just one aggregate stone. 

% 

%       Y - known data set. In training, this contains the known composition 

%   of all aggregate stones. For testing, enter 0 for this input.) 

% 

%   PLS - struct containing PLS generated in training mode. Only used in 

%   testing mode. For training mode, this input will be null. 

% 

%   ncomp - number of PLS components to be used in training the PLS model. 

%   In training mode enter the number of PLS components to use or enter a 

%   number <= 0 to automatically use the maximum PLS components. In testing 

%   mode, enter 0 for this input. 

% 

%   mode - 'train' or 'test' (obtained from GUI) 

% 

% Outputs: 

%   Training mode - Saves the PLS model in a struct; contains beta matrix 

%   necessary for testing. 

%   Testing mode - Saves the predicted chemical composition for the input 

%   observed spectrometer data. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function laseranalysis(rock_data, PLS, ncomp_in, mode, thresholds, resultsFigName, 

settingsSave_dir, TStamp) 

%% TRAINING MODE %% 

if(strcmp(mode,'train')) 

    w = waitbar(0,'Generating PLS Model...','Name','Please Wait...'); 

    try 

    frames = java.awt.Frame.getFrames(); 

    frames(end).setAlwaysOnTop(1); 

    catch 

    end 

     

    % LOAD DATA IF FUNCTION IS CALLED FROM GUI 

    if(ischar(rock_data)) 

        disp('Loading Rock Data.') 

        rock_data = load(rock_data); 

        rock_data = rock_data.rock_data; 

        X = rock_data.X; 

         

        disp('Loading Y Data.') 

        Y = rock_data.Y; 

        classer = rock_data.C; 

    end 

     

    %%%%%%%%%%%%%%%%%%%%%%% 

    % PREPROCESSING STAGE % 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % NOTE % 

    %%%%%%%% 

    % This stage can eventually contain all of the different types of 

    % preprocessing techniques we want to test. This includes the split 

    % training technique, Y-scaling, and normalizing the data to total 

    % light emission. 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

    waitbar(1/10,w); 

    % Remove light intensity values less than 0. 

    [m,n]=size(X); 

  

    disp('Removing negative light intensity values.') 

    for i=1:m 

        for j=1:n 

            if X(i,j)<0 
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                X(i,j)=0; 

            end 

        end 

    end 

    waitbar(3/10,w); 

    % Normalizing Data to Total Light Emission 

    disp('Normalizing spectra to total light emissions.') 

     

    % Initializing total light intensity. 

        total_light_int=zeros(m,1); 

     

    for i=1:m 

        for j=1:n 

            total_light_int(i) = total_light_int(i) + X(i,j); 

        end 

    end 

     

    % Determine Xnorm 

    Xnorm = zeros(m,n); 

    for i=1:m 

        for j=1:n 

            Xnorm(i,j) = X(i,j)/total_light_int(i); 

        end 

    end 

    waitbar(4/10,w); 

    % Perform Y Scaling 

    numCol= size(Y,2); 

     

    % Initialize minmax matrix. Currently 2x24, but it can be of varying 

    % size. 

    minmax_base = zeros(2, numCol); 

    for i = 1:numCol 

         

        maxVal = max(Y(:,i)); 

        minVal = min(Y(:,i)); 

        minmax_base(2,i) = minVal; 

        minmax_base(1,i) = maxVal; 

        val_range = maxVal-minVal; 

        if(val_range == 0) 

            Yscaled(:,i) = 0; 

        else 

            Yscaled(:,i) = (Y(:,i) - minVal)/val_range; 

        end 

         

    end 

    waitbar(5/10,w); 
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    % NOTE: Do Y scaling for Carb and Nonc models after splitting into 

    % separate matrices 

     

    % Determine pls components if set to 'Auto' 

    % THIS NEEDS TO BE DONE SEPARATELY FOR EACH OF THE SPLIT 

TRAINING 

    % MODELS 

     

    ncomp_base_in = ncomp_in.Base; 

    if ncomp_base_in<=0; 

        disp('Determining optimal number of PLS components for Base model.') 

        ncomp = 25; 

         

        % Find PLS regression for starting number of ncomp 

        [~,~,~,~,~,PCTVAR] = plsregress(Xnorm,Yscaled,ncomp); 

        pctvar_count = 0; 

        PCTVAR = 100*PCTVAR; 

         

        % Set ncomp to max number that explains >1% of variation 

        for i = 1:ncomp 

            if (PCTVAR(2,i) >= 1) 

                pctvar_count = pctvar_count + 1; 

            else 

                break; 

            end 

        end 

        ncomp = i - 1; 

        disp(['Number of Base PLS components automatically set to ', num2str(ncomp),'.']); 

    else 

        ncomp = ncomp_base_in; 

    end 

    waitbar(7/10,w); 

    % PLS REGRESSION 

    disp('Generating Broad Base PLS Model.') 

    [~,~,~,~,betamat,PCTVAR] = plsregress(Xnorm,Yscaled,ncomp); 

     

    % Creates a structure with all of the PLS Model variables to be saved as a 

    % .mat file. 

    PLS_Model_base = struct('Date', date, 'PercentVariation', PCTVAR, 'Beta', betamat, 

'MinMax', minmax_base); 

    PLS_Model_base.NComp = ncomp; 

     

    % SPLIT TRAINING 

    Ycarb = []; 

    Xcarb = []; 

    Ynonc = []; 
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    Xnonc = [];     

    Ytrap = []; 

    Xtrap = []; 

    for i = 1:size(Y,1) 

        switch classer(i) 

             

            case 'c'   

                Ycarb = cat(1,Ycarb,Y(i,:)); 

                Xcarb = cat(1,Xcarb,Xnorm(i,:)); 

            case 'n' 

                Ynonc = cat(1,Ynonc,Y(i,:)); 

                Xnonc = cat(1,Xnonc,Xnorm(i,:)); 

            case 't' 

                Ytrap = cat(1,Ytrap,Y(i,:)); 

                Xtrap = cat(1,Xtrap,Xnorm(i,:)); 

            otherwise 

                error('Error in XRF Sheet used in Calibration. Unknown classification') 

        end 

    end 

     

    % Calculate ncomp for carbonate rocks 

    ncomp_carb_in = ncomp_in.Carbonate; 

    if ncomp_carb_in<=0; 

        disp('Determining optimal number of PLS components for Carbonate model.') 

        ncomp_carb = 25; 

         

        % Find PLS regression for maximum number of ncomp 

        [~,~,~,~,~,PCTVAR] = plsregress(Xcarb,Ycarb,ncomp_carb); 

        pctvar_count = 0; 

        PCTVAR = 100*PCTVAR; 

        % Set ncomp to max number that explains >1% of variation 

        % Stop searching if two components in a row are found to explain 

        % less than 1%. 

        for i = 1:ncomp_carb 

            if (PCTVAR(2,i) >= 1) 

                pctvar_count = pctvar_count + 1; 

            else 

                break; 

            end 

        end 

        ncomp_carb = i - 1; 

        disp(['Number of Carbonate PLS Model components automatically set to ', 

num2str(ncomp_carb),'.']); 

    else 

        ncomp_carb = ncomp_carb_in; 

    end 
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        % Perform Y scaling for Carbonate rocks 

    minmax_carb = zeros(2, numCol); 

    for i = 1:numCol 

         

        maxVal = max(Ycarb(:,i)); 

        minVal = min(Ycarb(:,i)); 

        minmax_carb(2,i) = minVal; 

        minmax_carb(1,i) = maxVal; 

        val_range = maxVal-minVal; 

        if(val_range == 0) 

            Yscaled_carb(:,i) = 0; 

        else 

            Yscaled_carb(:,i) = (Ycarb(:,i) - minVal)/val_range; 

        end 

         

    end 

    %------------------------------------------------------------- 

    % Calculate ncomp for noncarbonate rocks 

    ncomp_nonc_in = ncomp_in.Carbonate; 

    if ncomp_nonc_in<=0; 

        disp('Determining optimal number of PLS components for Non-Carbonate model.') 

        ncomp_nonc = 25; 

         

        % Find PLS regression for maximum number of ncomp 

        [~,~,~,~,~,PCTVAR] = plsregress(Xnonc,Ynonc,ncomp_nonc); 

        pctvar_count = 0; 

        PCTVAR = 100*PCTVAR; 

        % Set ncomp to max number that explains >1% of variation 

        % Stop searching if two components in a row are found to explain 

        % less than 1%. 

        for i = 1:ncomp_nonc 

            if (PCTVAR(2,i) >= 1) 

                pctvar_count = pctvar_count + 1; 

            else 

                break; 

            end 

        end 

        ncomp_nonc = i - 1; 

        disp(['Number of Non-Carbonate PLS Model components automatically set to ', 

num2str(ncomp_nonc),'.']); 

    else 

        ncomp_nonc = ncomp_nonc_in; 

    end 

     

    % Perform Y scaling for NonCarbonate rocks 

    minmax_nonc = zeros(2, numCol); 
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    for i = 1:numCol 

         

        maxVal = max(Ynonc(:,i)); 

        minVal = min(Ynonc(:,i)); 

        minmax_nonc(2,i) = minVal; 

        minmax_nonc(1,i) = maxVal; 

        val_range = maxVal-minVal; 

        if(val_range == 0) 

            Yscaled_nonc(:,i) = 0; 

        else 

            Yscaled_nonc(:,i) = (Ynonc(:,i) - minVal)/val_range; 

        end 

         

    end 

    %------------------------------------------------------------ 

    ncomp_trap_in = ncomp_in.Trap; 

    if ncomp_trap_in<=0; 

        disp('Determining optimal number of PLS components for Traprock model.') 

        ncomp_trap = 25; 

         

        % Find PLS regression for maximum number of ncomp 

        [~,~,~,~,~,PCTVAR] = plsregress(Xcarb,Ycarb,ncomp_trap); 

        pctvar_count = 0; 

        PCTVAR = 100*PCTVAR; 

        % Set ncomp to max number that explains >1% of variation 

        % Stop searching if two components in a row are found to explain 

        % less than 1%. 

        for i = 1:ncomp_trap 

            if (PCTVAR(2,i) >= 1) 

                pctvar_count = pctvar_count + 1; 

            else 

                break; 

            end 

        end 

        ncomp_trap = i - 1; 

        disp(['Number of Traprock PLS Model components automatically set to ', 

num2str(ncomp_trap),'.']); 

    else 

        ncomp_trap = ncomp_trap_in; 

    end 

     

    % Perform Y scaling for Traprocks 

    minmax_trap = zeros(2, numCol); 

    for i = 1:numCol 

         

        maxVal = max(Ytrap(:,i)); 
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        minVal = min(Ytrap(:,i)); 

        minmax_trap(2,i) = minVal; 

        minmax_trap(1,i) = maxVal; 

        val_range = maxVal-minVal; 

        if(val_range == 0) 

            Yscaled_trap(:,i) = 0; 

        else 

            Yscaled_trap(:,i) = (Ytrap(:,i) - minVal)/val_range; 

        end 

         

    end 

  

        waitbar(8/10,w); 

     

    % PLS REGRESSION Trap 

    disp('Generating Trap Rock PLS Model.') 

    [~,~,~,~,betamat,PCTVAR] = plsregress(Xtrap,Yscaled_trap,ncomp_trap); 

     

    % Creates a structure with all of the PLS Model variables to be saved as a 

    % .mat file. 

    PLS_Model_trap = struct('Date', date, 'PercentVariation', PCTVAR, 'Beta', betamat, 

'MinMax', minmax_trap); 

    PLS_Model_trap.NComp = ncomp_trap; 

     

    % PLS REGRESSION CARB 

    disp('Generating Carbonate Rock PLS Model.') 

    [~,~,~,~,betamat,PCTVAR] = plsregress(Xcarb,Yscaled_carb,ncomp_carb); 

     

    % Creates a structure with all of the PLS Model variables to be saved as a 

    % .mat file. 

    PLS_Model_carb = struct('Date', date, 'PercentVariation', PCTVAR, 'Beta', betamat, 

'MinMax', minmax_carb); 

    PLS_Model_carb.NComp = ncomp_carb; 

     

    % PLS REGRESSION NONC 

    disp('Generating Non-Carbonate Rock PLS Model.') 

    [~,~,~,~,betamat,PCTVAR] = plsregress(Xnonc,Yscaled_nonc,ncomp_nonc); 

     

    % Creates a structure with all of the PLS Model variables to be saved as a 

    % .mat file. 

    PLS_Model_nonc = struct('Date', date, 'PercentVariation', PCTVAR, 'Beta', betamat, 

'MinMax', minmax_nonc); 

    PLS_Model_nonc.NComp = ncomp_nonc; 

    

    waitbar(8.5/10,w); 
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    % Create PLS structure that contains PLS models for base, carbonate, 

    % and noncarbonate all together and save. This is the file the user 

    % should load when testing the system as it contains all of the 

    % necessary PLS models. 

    PLS_Model_All = struct('Base', PLS_Model_base, 'Carbonate', PLS_Model_carb, 

'NonCarbonate', PLS_Model_nonc, 'Trap', PLS_Model_trap); 

    save_dir = check_create_dir('LAT Results\Training Data - PLS 

Models',settingsSave_dir,3);  

    save([save_dir,'\PLS-Model-All-', TStamp, '.mat'], 'PLS_Model_All'); 

     

    waitbar(10/10,w); 

    disp(['PLS Model saved to ', settingsSave_dir,'\LAT Results\Training Data - PLS 

Models']) 

    disp('Model calibration complete.') 

    delete(w) 

    waitfor(msgbox(['PLS Model saved to ', settingsSave_dir,'\LAT Results\Training Data 

- PLS Models'],'Model Calibration Complete')) 

end 

%% TESTING MODE %% 

close all; 

if(strcmp(mode,'test')) || (strcmp(mode, 'testset')) 

    w = waitbar(0,'Processing testing data...','Name','Please Wait...'); 

    try 

        frames = java.awt.Frame.getFrames(); 

        frames(end).setAlwaysOnTop(1); 

    catch 

    end 

    setdata = rock_data; 

    sampnum = numel(setdata); 

    save_dir = check_create_dir('LAT Results\Testing Data - 

Analysis',settingsSave_dir,3); 

    means=cell(sampnum+1,25); 

    chem = {'SiO2' 'Al2O3' 'Fe2O3' 'CaO' 'MgO' 'Na2O' 'P2O5' 'TiO2' 'K2O' 'MnO' 'BaO' 

'SO3' 'SrO' 'CuO' 'ZrO2' 'ZnO' 'Y2O3' 'Rb2O' 'Ga2O3' 'Cl' 'Cr2O3' 'NiO' 'CeO2' 

'Nb2O5'}; 

    means(1,2:25)=chem; 

    stddev=means; 

    resultsFigure = figure('WindowStyle', 'normal','NumberTitle','Off'); 

    if(sampnum == 1) 

        set(resultsFigure,'Name',['Single Test: ' resultsFigName ' Results']); 

    else 

        set(resultsFigure,'Name',['Set Test: ' resultsFigName ' Results']); 

    end 

    resultsTabGroup = uitabgroup(resultsFigure); 

    resultsTabArray = []; 

    for c = 1:sampnum 
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        waitbar((1/15+14/15*(c/sampnum)),w) 

        rock_data = setdata{c}; 

        % LOAD BETA MATRIX     

        dir = pwd; 

        disp([setdata{c},':']) 

        disp('Loading PLS model.') 

        if(ischar(PLS)) 

            load(PLS); 

        end 

        betamat = PLS_Model_All.Base.Beta; 

  

        % Obtain name of rock from rock_data filename. 

        rock_type = rock_data(1:length(rock_data)-4); 

  

        if(ischar(rock_data)) 

            disp('Loading X Data.') 

            rock_data = load([settingsSave_dir '\LAT Results\Testing Data - Conversion to 

mat\' TStamp '\'  rock_data]); 

            X = rock_data.test_rock_data; 

        end 

  

        % Preprocessing stage 

        % Should use the same techniques as in training. 

  

         [m,n]=size(X); 

        % Center Clipping 

        for i=1:m 

            for j=1:n 

                if X(i,j)<0 

                    X(i,j)=0; 

                end 

            end 

        end 

  

        % Normalizing Data to Total Light Emission 

        disp('Normalizing spectra to total light emission.') 

  

        % Initializing total light intensity. 

  

            total_light_int = zeros(1,m); 

  

        for i=1:m 

            for j=1:n 

                total_light_int(i) = total_light_int(i) + X(i,j); 

            end 

        end 
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        % Initialize Xnorm 

        Xnorm = zeros(m,n); 

        for i=1:m 

            for j=1:n 

                Xnorm(i,j) = X(i,j)/total_light_int(i); 

            end 

        end 

  

         % MAKE INITIAL PREDICTION 

        Ypredicted = [ones(size(Xnorm,1),1) Xnorm]*betamat; 

  

        % Obtain beta and minmax from carbonate or non-carbonate models based 

        % on carbonate threshold. Beta is used for prediction, minmax is used 

        % for reverse Y scaling. 

  

        % Edit: Reverse Y scaling has been changed back to just using the Base 

        % min_max values rather than split based on Carbonate content. 

        min_max = PLS_Model_All.Base.MinMax; 

  

        numCol = size(Ypredicted,2); 

        for i = 1:numCol 

            val_range = min_max(1,i)-min_max(2,i); 

            Ypredicted(:,i) = (Ypredicted(:,i)*val_range) + min_max(2,i); 

        end 

  

        % Use prediction matrix to determine whether the rock is carbonate, 

        % non-carbonate, or trap, and then make another prediction using the 

        % corresponding PLS Model. 

         

        % Ratio for classification 

        threshratio = 

mean((Ypredicted(:,1)./abs(Ypredicted(:,4))).^2.*abs(Ypredicted(:,3))); 

        disp(num2str(threshratio)) 

        if (thresholds == [-1,-1]) 

            carbthresh=150; 

            noncarbthresh=500; 

        else 

            carbthresh=thresholds(1); 

            noncarbthresh=thresholds(2); 

        end 

            

        if(threshratio <= carbthresh) 

             betamat = PLS_Model_All.Carbonate.Beta; 

             min_max = PLS_Model_All.Carbonate.MinMax; 

             disp('Classified as Carbonate') 
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        elseif (threshratio<=noncarbthresh) 

            betamat = PLS_Model_All.Trap.Beta; 

            min_max = PLS_Model_All.Trap.MinMax; 

            disp('Classified as Trap') 

        else 

            betamat = PLS_Model_All.NonCarbonate.Beta; 

            min_max = PLS_Model_All.NonCarbonate.MinMax; 

            disp('Classified as Non-Carbonate') 

        end 

  

        % Make new prediction based on split training decision. 

        Ypredicted = [ones(size(Xnorm, 1), 1) Xnorm] * betamat; 

  

        % Perform reverse Y scaling on predicted matrix. 

        numCol = size(Ypredicted,2); 

        for i = 1:numCol 

  

            val_range = min_max(1,i)-min_max(2,i); 

            %if(range == 0) 

            %   Ypredicted(:,i) = 0; 

            %else 

            Ypredicted(:,i) = (Ypredicted(:,i)*val_range) + min_max(2,i); 

            %end 

            YpredLength = length(Ypredicted(:,i)); 

            for j=1:YpredLength 

                if Ypredicted(j,i)<0 

                    Ypredicted(j,i)=0; 

                end 

            end 

        end 

  

        % MEAN AND STD. DEV. CALCULATIONS 

        % Initialize mean and std. dev. variables 

        Ymean = zeros(1,size(Ypredicted,2)); 

        Ystd = zeros(1,size(Ypredicted,2)); 

        Ymode = zeros(1,size(Ypredicted,2)); 

        Ymedian = zeros(1,size(Ypredicted,2)); 

  

        % Calculate mean and std. dev. for each column. 

        for i = 1:size(Ypredicted,2) 

            Ymean(i) = mean(Ypredicted(:,i)); 

            Ystd(i) = std(Ypredicted(:,i)); 

            Ymedian(i) = median(Ypredicted(:,i)); 

        end 

  

        % DISPLAY RESULTS IN FORMATTED TABLE 



www.manaraa.com

118 
 

        resultsTabArray(c) = uitab(resultsTabGroup, 'Title',rock_type); 

        Ymstd = cat(1,Ymean,Ystd,Ymedian); 

        t = uitable('Parent', resultsTabArray(c), 'Data', Ypredicted, 'ColumnName', chem); 

        set(t,'Position',[0 80 560 315]) 

        h = uitable('Parent', resultsTabArray(c), 'Data', Ymstd, 'ColumnName', chem, 

'RowName', {'Mean','Std.','Median'}); 

        set(h,'Position',[0 0 560 80]) 

        %data extraction for excel 

            rockname=setdata{c}; 

            means(c+1,1)= {rockname(1:end-4)}; 

            stddev(c+1,1)= {rockname(1:end-4)}; 

             

            means(c+1,2:25)= num2cell(Ymean); 

            stddev(c+1,2:25)= num2cell(Ystd); 

             

        % COMPILE RESULTS STRUCTURE 

        Gap{1,24} = []; 

        lGap{1,1} = []; 

        ExcelRockSum{c} = 

[chem;num2cell(Ypredicted);Gap;num2cell(Ymean);num2cell(Ystd)]; 

        ERScol = size(ExcelRockSum{c},1) - 3; 

        ExcelRockSumLabels = {} 

        for lblC = 2:ERScol 

            ExcelRockSumLabels{lblC,1} = ['Sample ' num2str(lblC-1)]; 

        end 

        ExcelRockSumLabels = [ExcelRockSumLabels;lGap;'Mean';'Std.']; 

        ExcelRockSum{c} = [ExcelRockSumLabels ExcelRockSum{c}];  

    end 

    delete(w) 

    if exist('actxserver','file') 

        w2 = waitbar(0,'Exporting to Excel...','Name','Please Wait...'); 

        try 

            frames = java.awt.Frame.getFrames(); 

            frames(end).setAlwaysOnTop(1); 

        catch 

        end 

        if(strcmp(mode,'test')) 

            ExcelName = 'Single Test'; 

        elseif(strcmp(mode,'testset')) 

            ExcelName = 'Testing Set'; 

        end 

        cd(save_dir) 

        warning('off','MATLAB:xlswrite:AddSheet') 

        xlswrite([ExcelName ' Results Summary ' TStamp '.xls'],means,'Mean Values') 

        xlswrite([ExcelName ' Results Summary ' TStamp '.xls'],stddev,'Standard 

Deviations') 
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        waitbar(3/10,w2) 

        for xw = 1:length(ExcelRockSum) 

            xlswrite([ExcelName ' Results Summary ' TStamp 

'.xls'],ExcelRockSum{xw},setdata{xw}(1:end-4)) 

            waitbar((3/10)+ (6/10)*(xw/length(ExcelRockSum)),w2) 

        end 

        disp(['Prediction report spreadsheet saved to ', save_dir]) 

        fprintf('\n') 

        objExcel = actxserver('Excel.Application'); 

         

        objExcel.Workbooks.Open(fullfile(cd,[ExcelName ' Results Summary ' TStamp 

'.xls'])); % Full path is necessary! 

        try 

          objExcel.ActiveWorkbook.Worksheets.Item(1).Delete; 

        catch 

        end 

         

        try 

            for cc = 1:length(ExcelRockSum)+2 

                invoke(objExcel.ActiveWorkbook.Worksheets.Item(length(ExcelRockSum)-

cc+1), 'Activate') 

                objExcel.Cells.Select; 

                objExcel.Selection.Columns.AutoFit; 

            end 

        catch 

        end 

         

        % Save, close and clean up. 

        objExcel.ActiveWorkbook.Save; 

        objExcel.ActiveWorkbook.Close; 

        waitbar(1,w2) 

        objExcel.Quit; 

        objExcel.delete; 

        msgbox(['An Excel spreadsheet containing a summary of this test has been saved in:' 

save_dir]) 

    else 

        warning('ActiveX process could not be created, excel summary not saved ') 

    end 

    cd(dir); 

    delete(w2) 

end  
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